

LIS009321771B2

(12) United States Patent

Schneider et al.

(10) Patent No.:

US 9,321,771 B2

(45) **Date of Patent:**

Apr. 26, 2016

(54) 5-ALKYNYL-PYRIMIDINES

(71) Applicants: Siegfried Schneider, Vienna (AT); Dirk Kessler, Vienna (AT); Lars van der Veen, Alsbach-Haehnlein (DE); Tobias Wunberg, Hinterbruehl (AT)

(72) Inventors: Siegfried Schneider, Vienna (AT); Dirk Kessler, Vienna (AT); Lars van der Veen, Alsbach-Haehnlein (DE); Tobias Wunberg, Hinterbruehl (AT)

(73) Assignee: **Boehringer Ingelheim International GmbH**, Ingelheim am Rhein (DE)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/087,179

(22) Filed: Nov. 22, 2013

(65) **Prior Publication Data**

US 2014/0073621 A1 Mar. 13, 2014

Related U.S. Application Data

(62) Division of application No. 13/012,082, filed on Jan. 24, 2011, now Pat. No. 8,633,183.

(30) Foreign Application Priority Data

Jan. 26, 2010 (EP) 10151723

(51) **Int. Cl.** A61K 31/495 (2006.01)C07D 239/26 (2006.01)C07D 471/10 (2006.01)C07D 239/48 (2006.01)C07D 401/06 (2006.01)C07D 401/14 (2006.01)C07D 405/14 (2006.01)C07D 409/14 (2006.01)C07D 413/14 (2006.01)C07D 471/04 (2006.01)C07D 487/08 (2006.01)

(52) U.S. Cl.

(58) Field of Classification Search

CPC ... A61K 31/495; C07D 239/26; C07D 239/48 USPC 514/211.15, 217.06, 218, 228.8, 235.8, 514/249, 252.18, 256; 540/544, 575, 600; 544/60, 63, 122, 295, 333

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,091,386 A 2/1992 Kesseler et al. 5,622,954 A 4/1997 Henrie, II et al. 8,633,183 B2* 1/2014 Schneider C07D 239/26 514/211.15 2011/0281838 A1 11/2011 Wunberg et al. 2012/0028952 A1 2/2012 Schneider et al.

FOREIGN PATENT DOCUMENTS

ΞP	0361273 A2	4/1990
P	2006044823 A	2/2006
WO	9414780 A1	7/1994
WO	9820878 A1	5/1998
WO	0162233 A2	8/2001
WO	0208205 A1	1/2002
WO	2005016914 A1	2/2005
WO	2005060969 A1	7/2005
WO	2006044823 A2	4/2006
WO	2006082371 A1	8/2006
WO	2006082373 A1	8/2006
WO	2006103449 A2	10/2006
WO	2006106721 A1	10/2006
WO	2008023180 A1	2/2008
WO	2008067389 A2	6/2008
WO	2008080965 A2	7/2008
WO	2008155140 A1	12/2008
WO	WO 2010/012740 *	2/2010

OTHER PUBLICATIONS

Pearce et al., Failure modes in anticancer drug discovery and development, Cancer Drug Design and Discovery Edited by Stephen Neidle, Chapter 18, pp. 424-435 (2008).*

(Continued)

Primary Examiner — Deepak Rao

(74) Attorney, Agent, or Firm — Michael P. Morris; Usha R. Patel

(57) ABSTRACT

The present invention encompasses compounds of general formula (1)

$$\begin{array}{c}
\mathbb{R}^2 \\
\mathbb{N} \\
\mathbb{R}^1
\end{array}$$
(1)

wherein

 R^1 to R^3 are defined as in claim 1, which are suitable for the treatment of diseases characterized by excessive or abnormal cell proliferation, and the use thereof for preparing a medicament having the above-mentioned properties.

2 Claims, No Drawings

(56) References Cited

OTHER PUBLICATIONS

Johnson et al., Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials, British Journal of Cancer (2001) 64(10): 1424-1431.*

Simone, Oncology: Introduction, Cecil Textbook of Medicine, 20th Edition, vol. 1, pp. 1004-1010, 1996.*

Gura, Systems for identifying New Drugs Are Often Faulty, Cancer Models, Science, vol. 278, No. 5340, pp. 1041-1042, Nov. 1997.* Matulenko et al., 4-Amino-5-aryl-6-arylethynylpyrimidines: Structure-activity relationships of non-nucleoside adenosine kinase inhibitors, Bioorganic & Medicinal Chemistry 15 (2007), pp. 1586-

Fry, Phosphoinoditide 3-Kinase signalling in breast cancer: how big a role might it play?, Breast Cancer Research, vol. 3, No. 5, pp. 304-312, 2001.*

Bundgaard, Design of Prodrugs, p. 1, 1985.*

Wolff, Some consideration for prodrug design, Burger's Medicinal Chemistry and Drug Discovery, 5th Edition, vol. I Principles and Practice, pp. 975-977, 1995.*

Banker et al., Prodrugs, Modern Pharmaceutics, Third Edition and Expanded, pp. 451 and 596 (1996).*

Douglas, Jr., Introduction to Viral Diseases, Cecil Textbook of Medicine, 20th Edition, vol. 2, pp. 1739-1742, 1996.*

Silverman, Prodrugs and Drug Delivery Systems, The Organic Chemistry of Drug Design and Drug Action, pp. 352-399, 1992.*

Diaz-Padilla, Ivan et al. "Biologic rationale and clinical activity of mTOR inhibitors in gynecological cancer" Cancer Treatment Review (2012) 9 pgs.

Hannah, Duncan R. et al. "Structural Studies on Bioactive Compounds. Part 29: Palladium Catalysed Arylations and Alkynylations of Sterically Hindered Immunomodulatory 2-Amino-5-halo-4,6-(disubstituted) pyrimidines" Bioorganic & Medicinal Chemistry (2000) vol. 8, pp. 739-750.

Hisamatsu, Takeshi et al. "Potential Role of mTORC2 as a Therapeutic Target in Clear Cell Carcinoma of the Ovary" Molecular Cancer Therapeutics (2013) vol. 12(7) pp. 1367-1377.

International Search Report for PCT/EP2011/051061mailed on Mar. 22, 2011.

International Search Report PCT/EP2011/051060 mailed Apr. 26, 2011.

International Search Report, Form PCT/ISA/210, for corresponding PCT/EP2009/059114; date of mailing: Oct. 2, 2009.

Janku, Filip et al. "PI3K/AKT/mTOR Inhibitors in Patients with Breast and Gynecologic Malignancies Harboring PIK3CA Mutations" Journal of Clincal Oncology (2012) pp. 1-7.

Jones, Michael L. et al. "Inhibitors of Dihydrofolate Reductase: Design, Synthesis and Antimicrobial Activities of 2,4-Diamino-6-methyl-5-ethynylpyrimidines" Journal of Heterocylic Chemistry (1999) vol. 36, pp. 145-148.

Liu, Pixu et al. "Targeting the phosphoinositide 3-kinase pathway in cancer" (2009) Nature Reviews vol. 8, pp. 627-644.

Pal, Manojit et al. "Alkynylation of halo pyrimidines under Pd/C-copper catalysis: regioselective synthesis of 4- and 5-alkynylpyrimidines" Tetrahedron Letters (2006) vol. 47, pp. 3923-3928.

Pelphrey, Phillip M. et al. "Highly Efficient Ligands for Dihydrofolate Reductase from Cryptosporidium hominis and Toxoplasma gondii Inspired by Structural Analysis" Journal of Medicinal Chemistry (2007) vol. 50 pp. 940-950.

Petricci, Elena et al. "Microwave-enhanced Sonogashira coupling reaction of substituted pyrimidinones and pyrimidine nucleosides" Tetrahedron Letters, (2003) vol. 44, pp. 9181-9184.

Rodriguez, Alain Louis et al. "Verstile Indole Synthesis by a 5-endodig Cyclization Mediated by Potassium or Cesium Bases" Angew Chem. Int. Ed. (2000) vol. 39, No. 14 pp. 2488-2490.

Schmid, Bernd C. et al. "New perspectives in ovarian cancer treatment" Maturitas (2013) 9 pgs.

Testa, Bernard et al. "Prodrug Design" Encyclopedia of Pharmaceutical Technology, (J Swarbrick ed., 3rd ed, 2007) pp. 3008-3014. Wiberg, Kenneth et al. "Substituent Effects. 3. A Comparison of Ethyl, Vinyl, Isopropyl, and Cyclopropyl Derivatives" J. Org. Chem. (1992) 57, pp. 5092-5101.

^{*} cited by examiner

 \mathbb{R}^{2} $\mathbb{R}^{3},$ \mathbb{R}^{1}

wherein the groups R^1 to R^3 have the meanings given in the 15 claims and specification, the isomers thereof, processes for preparing these alkynyl-pyrimidines and their use as medicaments.

BACKGROUND TO THE INVENTION

A number of protein kinases have already proved to be suitable target molecules for therapeutic intervention in a variety of indications, e.g. cancer and inflammatory and autoimmune diseases. Since a high percentage of the genes 25 involved in the development of cancer which have been identified thus far encode kinases, these enzymes are attractive target molecules for the therapy of cancer in particular.

The phosphoinositide 3-kinase (PI3K) pathway is activated in a broad spectrum of human cancers. This may occur 30 either via mutation of PI3K resulting in activation of the kinase, or indirectly via inactivation of the phosphotase and tensin homologue (PTEN) suppressor. In both cases, an activation of the signalling cascade is induced that promotes transformation of cells both in vitro and in vivo. Within the 35 cascade, the Pi3K family of enzymes and the kinase mTOR play a pivotal role. The PI3K family comprises 15 lipid kinases with distinct substrate specificities, expression pattern and modes of regulation. They play an important role in numerous cell processes such as e.g. cell growth and differ- 40 entiation processes, the control of cytoskeletal changes and the regulation of intracellular transport processes. On the basis of their in vitro specificity for certain phosphoinositide substrates the PI3-kinases can be divided into different categories. The mammalian target of rapamycin (mTOR) is a 45 serine/threonine kinase related to the lipide kinases of the PI3-kinase family. It exists in two complexes, mTORC1 and mTORC2, which are differentially regulated, have distinct substrate specificities, and are differentially sensitive to rapamycin. The central role of mTOR in controlling key cellular 50 growth and survival pathways has sparked interest in discovering mTOR inhibitors that bind to the ATP site and therefore target both mTORC2 and mTORC1. As a consequence, inhibition of the PI3K pathway, particularly mediated via Pi3Kα and mTOR, has emerged as an attractive target for cancer 55 therapeutics.

5-Alkynyl-pyrimidines are described for example as protein kinases inhibiting compounds in WO2006044823.

DETAILED DESCRIPTION OF THE INVENTION

It has now surprisingly been found that compounds of general formula (1), wherein the groups R^1 to R^4 have the meanings given below, act as inhibitors of kinases. In particular, the compounds of the invention inhibit PI3K α and mTOR 65 kinases. Thus, the compounds according to the invention may be used for example for the treatment of diseases connected

2

with the activity of kinases and characterised by excessive or abnormal cell proliferation, like for example cancer.

The present invention relates to compounds of general formula (1)

5 wherein

 R^3 denotes a group selected from among 3-8 membered heterocycloalkyl, C_{6-10} aryl and 5-12 membered heteroaryl, optionally substituted by one or more identical or different R^4 ; and

 1 denotes a group selected from among C_{6-10} aryl and 5-12 membered heteroaryl, optionally substituted by one or more identical or different R^{5} and

R² denotes a group selected from among hydrogen, C₁₋₄alkyl, C₃₋₈cycloalkyl, 3-8 membered heteroalkyl, 3-8 membered heterocycloalkyl, OR^v, NR^vR^{v1}, —SR^v, CF₃, —CN, —NC and —NO₂, and

each R^4 denotes a group selected from among R^a and R^b ; and each R^a independently of one another denotes hydrogen or a group selected from among C_{1-6} alkyl, 2-6 membered heteroalkyl, C_{1-6} haloalkyl, C_{3-10} cycloalkyl, C_{4-16} cycloalkylalkyl, C_{6-10} aryl, C_{7-16} arylalkyl, 5-12 membered heteroaryl, 6-18 membered heteroarylalkyl, 3-14 membered heterocycloalkyl and 4-14 membered heterocycloalkylalkyl, R^a optionally being substituted by one or more identical or different R^b and/or R^{c4} ,

each R^b denotes a suitable group and is selected independently of one another from among =O, -ORc, C1-3haloalkyloxy, $-OCF_3$, $-OCHF_2$, =S, $-SR^c$, $=NR^c$, $=NR^c$, $=NNR^cR^{c1}$, $=NNR^cR^{c1}$, $=NN(R^g)C(O)NR^cR^{c1}$, $-NR^cR^{c1}$, $-ONR^{c}R^{c1}$, $-N(OR^{c})R^{c1}$, $-N(R^{g})NR^{c}R^{c1}$, halogen, $-CF_3$, -CN, -NC, -OCN, -SCN, -NO, $-NO_2$, $=N_2$, $\begin{array}{l} -N_3, \quad -S(O)R^c, \quad -S(O)OR^c, \quad -S(O)_2R^c, \quad -S(O)_2OR^c, \\ -S(O)NR^cR^{c1}, \quad -S(O)_2NR^cR^{c1}, \quad -OS(O)R^c, \quad -OS(O)_2R^c, \\ -OS(O)_2OR^c, \quad -OS(O)NR^cR^{c1}, \quad -OS(O)_2NR^cR^{c1}, \end{array}$ $-OS(O)NR^{c}R^{c1}$, $-C(O)R^{c}$, $-C(O)OR^{c}$, $-C(O)SR^{c}$, $-C(O)NR^{c}R^{c1}$ $-C(O)N(R^g)NR^cR^{c1}$, $-C(O)N(R^g)OR^c$, $-C(NR^g)NR^c$ R^{c1} , $-C(NOH)^c$, $-C(NOH)NR^cR^{c1}$, $-OC(O)R^c$, -OC $(O)OR^c$, $\longrightarrow OC(O)SR^c$, $\longrightarrow OC(O)NR^cR^{c1}$, $\longrightarrow OC(NR^g)NR^c$ $\begin{array}{lll} \mathbf{R}^{c1}, & -\mathbf{SC}(\mathbf{O})\mathbf{R}^{c}, & -\mathbf{SC}(\mathbf{O})\mathbf{O}\mathbf{R}^{c}, & -\mathbf{SC}(\mathbf{O})\mathbf{N}\mathbf{R}^{c}\mathbf{R}^{c1}, & -\mathbf{SC}(\mathbf{O})\mathbf{R}^{c}\mathbf{R}^{c1}, & -\mathbf{SC}(\mathbf{O})\mathbf{R}^{c}, & -\mathbf{N}[\mathbf{C}(\mathbf{O})\mathbf{R}^{c}][\mathbf{C}(\mathbf{O})\mathbf{R}^{c1}], \end{array}$ $-N(OR^g)C(O)R^c$, $-N(R^g)C(NR^{g1})R^c$, $-N(R^g)N(R^{g1})C$ $(O)R^{c}$, $-N[C(O)R^{c2}]NR^{c}R^{c1}$, $-N(R^{g})C(S)R^{c}$, $-N(R^{g})S$ $(O)R^c$, $-N(R^g)S(O)OR^c$, $-N(R^g)S(O)_2R^c$, $-N[S(O)_2R^c]$ $[S(O)_2R^{c1}], \longrightarrow N(R^g)S(O)_2OR^c, \longrightarrow N(R^g)S(O)_2NR^cR^{c1}$ $-N(R^g)[S(O)_2]_2R^c$, $-N(R^g)C(O)OR^c$, $-N(R^g)C(O)SR^c$, $-N(R^g)C(O)NR^cR^{c1}, -N(R^g)C(O)NR^{g1}NR^cR^{c1}, -N(R^g)N(R^{g1})C(O)NR^cR^{c1}, -N(R^g)C(S)NR^cR^{c1}, -[N(R^g)C(O)]_2$ $-N(R^g)[C(O)]_2R^c, -N\{[C(O)]_2R^c\}\{[C(O)]_2R^{c1}\},$ $-N(R^g)[C(O)]_2OR^c$, $-N(R^g)[C(O)]_2NR^cR^{c1}$ $(O)_{2}OR^{c}$ { $[C(O)]_{2}OR^{c1}$ }, -N{ $[C(O)]_{2}NR^{c}R^{c1}$ }{ $[C(O)]_{2}$ $-[N(R^g)C(O)]_2OR^c$, $-N(R^g)C(NR^{g1})OR^c$, $-N(R^g)C(NOH)R^c$, $-N(R^g)C(NR^{g1})SR^c$. $(NR^{g1})NR^{c}R^{c1}$, $N(R^{g})C(NC)NR^{c}R^{c1}$ and NC

5 each R^c, R^{c1}, R^{c2}, R^{c3} and R^{c4} independently of one another denotes hydrogen or a group selected from among C₁₋₆alkyl, 2-6 membered heteroalkyl, C₁₋₆haloalkyl, C₃₋₁₀cycloalkyl,

 $(R^g)NR^cR^{c1}$ and

ferent R^{h2} ; and

3

 C_{4-16} cycloalkylalkyl, C_{6-10} aryl, C_{7-16} arylalkyl, 5-12 membered hetero-aryl, 6-18 membered heteroarylalkyl, 3-14 membered heterocycloalkyl and 4-14 membered heterocycloalkylalkyl,

 R^{c} , R^{c1} , R^{c2} , R^{c3} and R^{c4} independently optionally being 5 substituted by one or more identical or different R^d and/or R^{e4} , where R^c together with R^g and/or R^{c1} and/or R^{c2} and/or R^{c3} or R^{c2} together with R^{c3} may form a 3-8 membered heterocyclalkyl residue via a shared C-, N-, O- or S-atom, and each R^d denotes a suitable group and is selected indepen- 10 dently of one another from among =0, $-OR^e$, C_{1-3} ha- $\begin{array}{lll} \text{loalkyloxy,} & -\text{OCF}_3, & -\text{OCHF2,} & =\text{S,} & -\text{SR}^e, & =\text{NR}^e, \\ = & \text{NOR}^e, = & \text{NNR}^e\text{R}^{e1}, = & \text{NN}(\text{R}^{g2})\text{C(O)}\text{NR}^e\text{R}^{e1}, -& \text{NR}^e\text{R}^{e1}, \end{array}$ $-\text{ONR}^e \text{R}^{e1}$, $-\text{N}(\text{R}^{g2})\text{NR}^e \text{R}^{e1}$, halogen, $-\text{CF}_3$, -CN, $-NC, -OCN, -SCN, -NO, -NO_2, =N_2, -N_3, -S(O)$ $\begin{array}{l} {\rm R}^e, \ -{\rm S}({\rm O}){\rm OR}^e, \ -{\rm S}({\rm O})_2{\rm R}^e, \ -{\rm S}({\rm O})_2{\rm OR}^e, \ -{\rm S}({\rm O}){\rm NR}^e{\rm R}^{e1}, \\ -{\rm S}({\rm O})_2{\rm NR}^e{\rm R}^{e1}, \ -{\rm OS}({\rm O}){\rm R}^e, \ -{\rm OS}({\rm O})_2{\rm R}^e, \ -{\rm OS}({\rm O})_2{\rm OR}^e, \\ -{\rm OS}({\rm O}){\rm NR}^e{\rm R}^{e1}, \ -{\rm OS}({\rm O})_2{\rm NR}^e{\rm R}^{e1}, \ -{\rm C}({\rm O}){\rm R}^e, \ -{\rm C}({\rm O}) \\ {\rm OR}^e, \ -{\rm C}({\rm O}){\rm SR}^e, \ -{\rm C}({\rm O}){\rm NR}^e{\rm R}^{e1}, \ -{\rm C}({\rm O}){\rm N}({\rm R}^{g2}){\rm NR}^e{\rm R}^{e1}, \end{array}$ $-C(O)N(R^{g^2})OR^e$, $-C(NR^{g^2})NR^eR^{e^1}$, $-C(NOH)R^e$, $-C(NOH)NR^eR^{e^1}$, $-OC(O)R^e$, $-OC(O)OR^e$, -OC(O) $--C(NOH)R^e$, 20 SR^e , $-OC(O)NR^eR^{e1}$, $-OC(NR^{g2})NR^eR^{e1}$, $-SC(O)R^e$, $-SC(O)OR^e$, $-SC(O)NR^eR^{e1}$, $--SC(NR^{g2})NR^{e}R^{e1}$ $-N(R^{g2})C(O)R^{e}, -N[C(O)R^{e}][C(O)R^{e1}], -N(OR^{g2})C(O)$ $R^{e}, \ -N(R^{g2})C(NR^{g3})R^{e}, \ -N(R^{g2})N(R^{g3})C(O)R^{e}, \ -N[C \ 25]$ $-N(R^{g^2})C(S)R^e$, (O) R^{e2}]N $R^{e}R^{e1}$, $-N(R^{g2})S(O)R^{e}$, $-N(R^{g2})S(O)OR^{e}-N(R^{g2})S(O)_{2}R^{e}, -N[S(O)_{2}R^{e}][S(O)_{2}$ R^{e1}], $-\dot{N}(\dot{R}^{g2})S(O)_{2}O\dot{R}^{e}$, $-\dot{N}(\dot{R}^{g2})S(O)_{2}N\dot{R}^{e}\dot{R}^{e1}$, $-\dot{N}(\dot{R}^{g2})$ $[S(O),],R^e$ $-N(R^{g2})C(O)OR^{e}$, $-N(R^{g^2})C(O)SR^e$, $-N(R^{g2})C(O)NR^{g3}NR^{e}R^{e1}$, 30 $-N(R^{g2})C(O)NR^{e}R^{e1}$, $-N(R^{g2})N(R^{g3})C(O)NR^{e}R^{e1}, -N(R^{g2})C(S)NR^{e}R^{e1}, -[N(R^{g2})C(O)][N(R^{g3})C(O)]R^{e}, -N(R^{g2})[C(O)]_{2}R^{e}, -N\{[C(O)]_{2}R^{e}, -[C(O)]_{2}R^{e}, -[C($ $(O)_{2}R^{e}$ { $[C(O)]_{2}R^{e1}$ }, $-N(R^{g2})[C(O)]_{2}OR^{e}$, $-N(R^{g2})[C(O)]_{2}OR^{e}$ $-N(R^{g2})C(NR^{g3})SR^{e}$, $-N(R^{g2})C(NR^{g3})NR^{e}R^{e1}$, $-N(R^{g2})$ $C(=N-CN)NR^eR^{e1}$ and $-N=C(R^{g2})NR^eR^{e1}$

each R^e, R^{e1}, R^{e2}, R^{e3} and R^{e4} independently of one another denotes hydrogen or a group selected from among C_{1-c}alkyl, 40 2-6 membered heteroalkyl, C_{1-c}haloalkyl, C₃₋₁₀cycloalkyl, C₄₋₁₆cycloalkylalkyl, C₆₋₁₀aryl, C₇₋₁₆arylalkyl, 5-12 membered hetero-aryl, 6-18 membered heteroarylalkyl, 3-14 membered heterocycloalkyl and 4-14 membered heterocycloalkylalkyl, where R^e together with R^{g2} and/or R^{e1} and/or R^{e2} and/or R^{e3} or R^{e2} together with R^{e3} may form a 3-8 membered heterocyclalkyl residue via a shared C-, N-, O- or S-atom, and where R^e, R^{e1}, R^{e2}, R^{e3} and R^{e4} independently optionally being substituted by one or more identical or different R^{e2} and/or R^{g6}, and

each R^f denotes a suitable group and in each case is selected independently of one another from among \Longrightarrow O, \longrightarrow OR g , $\begin{array}{ll} C_{1.3}\text{haloalkyloxy}, -\text{OCF}_3, -\text{OCHF}_2, =\text{S}, -\text{SR}^g, =\text{NR}^{g4}\\ =\text{NOR}^{g4}, & =\text{NNR}^{g4}\text{R}^{g5}, & =\text{NN}(\text{R}^h)\text{C(O)}\text{NR}^{g4}\text{R}^{g5} \end{array}$ =NN(R^h)C(O)NR^{g4}R^{g5}, $=NOR^{g4}$. $-NR^{g4}R^{g5}$, $-ONR^{g4}R^{g5}$, $-N(R^h)NR^{g4}R^{g5}$, halogen, 55 $\begin{array}{l} -\text{CF}_3, -\text{CN}, -\text{NC}, -\text{OCN}, -\text{SCN}, -\text{NO}, -\text{NO}_2, =\text{N}_2, \\ -\text{N}_3, -\text{S(O)} \text{R}^{\text{g4}}, -\text{S(O)} \text{OR}^{\text{g4}}, -\text{S(O)}_2 \text{R}^{\text{g4}}, -\text{S(O)}_2 \text{OR}^{\text{g4}}, \\ -\text{S(O)} \text{NR}^{\text{g4}} \text{R}^{\text{g5}}, -\text{S(O)}_2 \text{NR}^{\text{g4}} \text{R}^{\text{g5}}, -\text{OS(O)} \text{R}^{\text{g4}}, -\text{OS} \end{array}$ $(O)_2 R^{g4}$. $-OS(O)_2OR^{g4}$, $-OS(O)NR^{g4}R^{g5}$, $-OS(O)_2$ $-C(O)R^{g4}$, $-C(O)OR^{g4}$, $-C(O)SR^{g4}$, -C(O) 60 $NR^{g4}R^{g5}$ $C(O)N(R^h)NR^{g4}R^{g5}$ $-C(O)N(R^h)OR^{g4}$ $-C(NR^h)NR^{g4}R^{g5}$, $-C(NOH)R^{g4}$, $-C(NOH)NR^{g4}R^{g5}$ $-OC(O)R^{g4}$, $-OC(O)OR^{g4}$, $-OC(O)SR^{g4}$, $NR^{4g}R^{g5}$, $-OC(NR^h)NR^{g4}R^{g5}$, $-SC(O)R^{g4}$, -OC(O)-SC(O) OR^{g4} , $-SC(O)NR^{g4}R^{g5}$, $-SC(NR^h)NR^{g4}R^{g5}$, $-N(R^h)C$ 65 $(O)R^{g4}$, $-N[C(O)R^{g4}]_2$, $-N(OR^h)C(O)R^{g4}$, $-N(R^h)C$ $-N(R^h)N(R^{h1})C(O)R^{g4},$ $(NR^{h1})R^{g4}$ $-N[C(O)R^{g6}]$

4

 $NR^{g4}R^{g5}$, $--N(R^h)C(S)R^{g4}$, $--N(R^h)S(O)R^{g4}$, $--N(R^h)S(O)$ $-N(R^h)S(O)_2R^{g^4}$, $-N[S(O)_2R^{g4}][S(O)_2R^{g5}],$ $-N(R^h)S(O)_2OR^{g4}$, $-N(R^h)S(O)_2NR^{g4}R^{g5}$, $(O)_2 I_2 R^{g4}$, $-N(R^h)C(O)OR^{g4}$, $-N(R^h)C(O)SR^{g4}$, $-N(R^h)$ $C(O)NR^{g4}R^{g5}$, $-N(R^h)C(O)NR^{h1}NR^{g4}R^{g5}$, $-N(R^h)N$ $\begin{array}{lll} & (O)NR^{g}R^{g}, & -N(R^{h})C(S)NR^{g4}R^{g5}, & -[N(R^{h})C(O)]\\ & [N(R^{h1})C(O)]R^{g4}, & -N(R^{h})[C(O)]_{2}R^{g4}, & -N\{[C(O)]_{2}R^{g4}\}\\ & [C(O)]_{2}R^{g5}\}, & -N(R^{h})[C(O)]_{2}OR^{g4}, & -N(R^{h})[C(O)]_{2}\\ \end{array}$ $\begin{array}{l} [N(R) \nearrow (\bigcirc)]_2 R^{85}\}, & -N(R^h)[C(O)]_2 O R^{87}, & -N(R^h)[C(O)]_2 O R^{84}\}, -N\{[C(O)]_2 O R^{84}\}\{[C(O)]_2 O R^{84}\}, -N\{[C(O)]_2 N R^{84} R^{85}\}\{[C(O)]_2 N R^{84} R^{85}\}, -[N(R^h)C(O)][N(R^{h1})C(O)] O R^{84}, & -N(R^h)C(N R^{h1})O R^{84}, & -N(R^h)C(N R^{h1})N R^{84} R^{85}, -N(R^h) C(N R^h) C(N R^h)$ $C(=N-CN)NR^{g4}R^{g5}$ and $-N=C(R^h)NR^{g4}R^{g5}$; and each R^g, R^{g1}, R^{g2}, R^{g3}, R^{g4}, R^{g5} and R^{g6} independently of one another denotes hydrogen or a group selected from among C_{1-6} alkyl, 2-6 membered heteroalkyl, C_{1-6} haloalkyl, C_{3-10} cycloalkyl, C_{4-16} cycloalkylalkyl, C_{6-10} aryl, C_{7-16} arylalkyl, 5-12 membered hetero-aryl, 6-18 membered heteroarylalkyl, 3-14 membered heterocycloalkyl and 4-14 membered heterocycloalkylalkyl, where R^g together with R^{g1} and/or R^h may form a 3-8 membered cycloalkyl or a 3-8 membered heterocyclalkyl residue via a shared C-, N-O- or S-atom, and where Rg, Rg1, Rg2, Rg3, Rg4, Rg5 and Rg6 independently optionally being substituted by one or more identical or dif-

each $\mathbf{R}^h, \mathbf{R}^{h_1}$ and \mathbf{R}^{h_2} is selected independently of one another from among hydrogen, $\mathbf{C}_{1\text{-}6}$ alkyl, 2-6 membered heteroalkyl, $\mathbf{C}_{1\text{-}6}$ haloalkyl, $\mathbf{C}_{3\text{-}10}$ eycloalkyl, $\mathbf{C}_{4\text{-}16}$ cycloalkylalkyl, $\mathbf{C}_{6\text{-}10}$ aryl, $\mathbf{C}_{7\text{-}16}$ arylalkyl, 5-12 membered heteroaryl, 6-18 membered heteroarylalkyl, 3-14 membered heterocycloalkyl and 4-14 membered heterocycloalkylalkyl, where \mathbf{R}^h together with \mathbf{R}^{h_1} may form a 3-8 membered cycloalkyl or a 3-8 membered heterocyclalkyl residue via a shared C-, N-Oor S-atom, and

each R^5 denotes a group selected from among R^m and R^n ; and each R^m independently of one another denotes hydrogen or a group selected from among C₁₋₆ alkyl, 2-6 membered heteroalkyl, C_{1-6} haloalkyl, C_{3-10} cycloalkyl, C_{4-16} cycloalkyla lkyl, C_{6-10} aryl, C_{7-16} arylalkyl, 5-12 membered heteroaryl, 6-18 membered heteroarylalkyl, 3-14 membered heterocycloalkyl and 4-14 membered heterocycloalkylalkyl, and R^m optionally substituted by one or more identical or different \mathbb{R}^n and/or R^{o4} , each R^n denotes a suitable group and is selected independently of one another from among =O, -OR°, C_{1-3} haloalkyloxy, $-OCF_3$, $-OCHF_2$, =S, $-SR^o$, $=NR^o$, =NOR°, =NNR°R°¹, =NN(R°)C(O)NR°R°¹, -NR°R°¹, $-\text{ONR}^{\circ}\text{R}^{\circ 1}$, $-\text{N}(\text{OR}^{\circ})\text{R}^{\circ 1}$, $-\text{N}(\text{R}^{s})\text{NR}^{\circ}\text{R}^{\circ 1}$, halogen, $-CF_3$, -CN, -NC, -OCN, -SCN, -NO, -NO, -NO, -NO, R^{o} , $-OS(O)_{2}OR^{o}$, $-OS(O)NR^{o}R^{o1}$, $-OS(O)_{2}NR^{o}R^{o}$ $-C(O)R^{o}$, $-C(O)OR^{o}$, $-C(O)SR^{o}$, $-C(O)NR^{o}R^{o}$ -OC(O)R°, $-OC(O)OR^{\circ}, -OC(O)SR^{\circ}, -OC(O)NR^{\circ}R^{\circ 1}, -OC(NR^{s})$ $NR^{o}R^{o1}$,— $SC(O)R^{o}$,— $SC(O)OR^{o}$,— $SC(O)NR^{o}R^{o1}$,—SC $(NR^s)NR^{\sigma}R^{\sigma 1}$, $-N(R^s)C(O)R^{\sigma}$, $-N[C(O)R^{\sigma}][C(O)R^{\sigma 1}]$, $-N(OR^s)C(O)R^o$, $-N(R^s)C(NR^{s1})R^o$, $-N(R^s)N(R^{s1})C(O)$ R^{o} , $-N[C(O)R^{o2}]NR^{o}R^{o1}$, $-N(R^{s})C(S)R^{o}$, $-N(R^{s})S(O)$ R^{o} , $-N(R^{s})S(O)OR^{o}$, $-N(R^{s})S(O)_{2}R^{o}$, $-N[S(O)_{2}R^{o}][S(O)_{2}R^{o}]$ $-N(R^s)S(O)_2OR^o$, $-N(R^s)S(O)_2NR^oR^{o1}$ $-N(R^s)[S(O)_2]_2R^o$, $-N(R^s)C(O)OR^o$, $-N(R^s)C(O)SR^o$ $\begin{array}{l} -N(R^s)C(O)NR^oR^{o1}, -N(R^s)C(O)NR^{s1}NR^oR^{o1}, -N(R^s)\\ N(R^{s1})C(O)NR^oR^{o1}, -N(R^s)C(S)NR^oR^{o1}, -[N(R^s)C(O)]_2 \end{array}$ $-N(R^s)[C(O)]_2R^o$, $-N\{[C(O)]_2R^o\}\{[C(O)]_2R^{o1}\}$, $-N(R^s)[C(O)]_2OR^{\sigma}$, $-N(R^s)[C(O)]_2NR^{\sigma}R^{\sigma 1}$,

 $(O)_{O}^{\circ} \{ [C(O)]_{O}^{\circ} \}, -N \{ [C(O)]_{O}^{\circ} NR^{\circ} R^{\circ} \} \{ [C(O)]_{O}^{\circ} \} \}$

 $NR^{o2}R^{o3}$ }, $-[N(R^s)C(O)]_2OR^o$, $-N(R^s)C(NR^{s1})OR^o$,

 $-N(R^s)C(NOH)R^o$, $-N(R^s)C(NR^{s1})SR^o$, $-N(R^s)C(NR^{s1})$ $NR^{\circ}R^{\circ 1}$ and $-N=C(R^{s})NR^{\circ}R^{\circ 1}$ and each R° , $R^{\circ 1}$, $R^{\circ 2}$ and R^{o3} independently of one another denotes hydrogen or a group selected from among C₁₋₆alkyl, 2-6 membered het- 5 eroalkyl, C_{1-6} haloalkyl, C_{3-10} cycloalkyl, C_{4-16} cycloalkylalkyl, C_{6-10} aryl, C_{7-16} arylalkyl, 5-12 membered hetero-aryl, 6-18 membered heteroarylalkyl, 3-14 membered heterocycloalkyl and 4-14 membered heterocycloalkylalkyl, where \mathring{R}^o together with R^s and/or R^{c1} and/or R^{c2} and/or R^{c3} or R^{c2} together with R^{c3} may form a 3-8 membered heterocyclalkyl residue via a shared C-, N-, O- or S-atom, and where R^o , R^{o1} , R^{o2} and R^{o3} independently optionally being substituted by one or more identical or different R^p and/or R^{q4} , and each R^p denotes a suitable group and is selected indepen- 15 dently of one another from among \longrightarrow O, \longrightarrow OR q , C_{1-3} ha- $\begin{array}{l} \text{loalkyloxy, } -\text{OCF}_3, -\text{OCHF}_2, =\text{S}, -\text{SR}^q, =\text{NR}^q, \\ =\text{NOR}^q, =\text{NNR}^q R^{q1}, =\text{NN}(R^s) \text{C(O)NR}^q R^{q1}, -\text{NR}^q R^{q1}, \end{array}$ $-\text{ONR}^q \text{R}^{q1}$, $-\text{N}(\text{R}^s)\text{NR}^q \text{R}^{q1}$, halogen, $-\text{CF}_3$, -CN, -NC, -OCN, -SCN, -NO, $-NO_2$, $=N_2$, $-N_3$, -S(O) 20 R^{q} , $-S(O)OR^{q}$, $-S(O)_{2}R^{q}$, $-S(O)_{2}OR^{q}$, $S(O)NR^{q}R^{q1}$, $\begin{array}{lll} -S(O)_2NR^qR^{q1}, & -OS(O)_2R^q, & -OS(O)_2R^q, & -OS(O)_2OR^q, \\ -OS(O)NR^qR^{q1}, & -OS(O)_2NR^qR^{q1}, & -C(O)R^q, & -C(O)\\ OR^q, & -C(O)SR^q, & -C(O)NR^qR^{q1}, & -C(O)N(R^s)NR^qR^{q1}, \end{array}$ $-C(NR^s)NR^qR^{q1}$, $-C(NOH)R^q$, 25 $-C(O)N(R^s)OR^q$, $-C(NOH)NR^qR^{q1}$, $-OC(O)R^q$, $-OC(O)OR^q$, -OC(O) SR^q , $-OC(O)NR^qR^{q1}$, $-OC(NR^s)NR^qR^{q1}$, $-SC(O)R^q$, $-SC(O)NR^q R^{q1}$, $-SC(NR^s)NR^qR^{q1}$, $-SC(O)OR^q$, $-N(R^s)C(O)R^q$, $-N[C(O)R^q][C(O)R^{q1}]$, $-N(OR^s)C(O)$ R^{q} , $-N(R^{s})C(R^{s1})R^{q}$, $-N(R^{s})N(R^{s1})C(O)R^{q}$, -N[C(O) 30 $(O)OR^q$, $--N(R^s)S(O)_2R^q,$ $-N[S(O)_2R^q][S(O)_2R^{q1}],$ $-N(R^s)S(O)_2NR^qR^{q1}$, $-N(R^s)S(O)_2OR^q$,
$$\begin{split} [S(O)_2]_2 R^q, & -N(R^s)C(O)OR^q, -N(R^s)C(O)SR^q, -N(R^s)C\\ (O)NR^q R^{q1}, & -N(R^s)C(O)NR^{s1}NR^q R^{q1}, & -N(R^s)N(R^{s1})C \end{split}$$
 $(O)NR^qR^{q1}, -N(R^s)C(S)NR^{q1}, -[N(R^s)C(O)][N(R^{g1})C$ (O)] R^q , $-N(R^s)$ [C(O)]₂ R^q , $-N{[C(O)]_2}R^q}{[C(O)]_2}R^q$ }, $-N(R^s)[C(O)]_2OR^q$, $--N(R^s)[C(O)]_2NR^qR^{q1},$ $(\mathcal{O})]_2\mathcal{O}\mathcal{R}^q\big\}\big\{[\mathcal{C}(\mathcal{O})]_2\mathcal{O}\mathcal{R}^q\big\},$ $-N\{[C(O)],NR^qR^{q1}\}\{[C$ $(O)]_2NR^{q^2}R^{q^3}\}, -[N(R^s)C(O)][N(R^{s1})C(O)]OR^q, -N(R^s)$ 40 $-N(R^s)C(NOH)R^q$, $-N(R^s)C(NR^{s1})SR^q$, $-N(R^s)C(NR^{s1})NR^qR^{q1}$, $-N(R^s)C(=N-CN)NR^qR^{q1}$ and $-N = C(R^s)NR^qR^{q1}$, and each R^q , R^{q1} , R^{q2} , R^{q3} and R^{q4} independently of one another denotes hydrogen or a group selected from among C_{1-6} alkyl, 45 membered heterocycloalkyl, — OR^{ν} , $NR^{\nu}R^{\nu l}$, CF_3 , —CN, 2-6 membered heteroalkyl, C₁₋₆haloalkyl, C₃₋₁₀cycloalkyl, C_{4-16} cycloalkylalkyl, C_{6-10} aryl, C_{7-16} arylalkyl, 5-12 membered hetero-aryl, 6-18 membered heteroarylalkyl, 3-14 membered heterocycloalkyl and 4-14 membered heterocycloalkylalkyl, where R^q together with R^{q1} and/or R^{q2} and/or 50 R^{q3} and/or R^{s} may form a 3-8 membered heterocyclalkyl residue via a shared C—, N—O- or S-atom, wherein R^q , R^{q1} , R^{q2} , R^{q3} and R^{q4} are optionally independently substituted by one or more identical or different R^a and/or R^{s4}, and each R' denotes a suitable group and in each case is selected 55 independently of one another from among =O, -ORs, C_{1-3} haloalkyloxy, $-OCF_3$, $-OCHF_2$, =S, $-SR^s$, $=NR^s$, =NOR^s, =NNR^sR^{s1}, =NN(R')C(O)NR^sR^{s1}, -NR^sR^{s1}, $-\text{ONR}^s \text{R}^{s1}$, $-\text{N}(\text{R}^h) \text{NR}^s \text{R}^{s1}$, halogen, $-\text{CF}_3$, -CN, $-NC, -OCN, -SCN, -NO, -NO_2, =N_2, -N_3, -S(O)$ 60 $\begin{array}{lll} R^s, & -\mathrm{S}(\mathrm{O})\mathrm{OR}^s, & -\mathrm{S}(\mathrm{O})_2R^s, & -\mathrm{S}(\mathrm{O})_2\mathrm{OR}^s, & -\mathrm{S}(\mathrm{O})\mathrm{NR}^s, \\ -\mathrm{S}(\mathrm{O})_2\mathrm{NR}^sR^{s1}, & -\mathrm{OS}(\mathrm{O})R^s, & -\mathrm{OS}(\mathrm{O})_2R^s, & -\mathrm{OS}(\mathrm{O})_2\mathrm{OR}^s, \end{array}$

 $-C(NR^t)NR^sR^{s1}$,

 $-C(NOH)NR^sR^{s1}$, $-OC(O)R^s$, $-OC(O)OR^s$, -OC(O)

 SR^s , $-OC(O)NR^sR^{s1}$, $-OC(NR^t)NR^sR^{s1}$, $-SC(O)R^s$,

 $-C(NOH)R^s$, 65

 $-C(O)N(R^t)OR^s$,

 $-SC(O)OR^s$, $-SC(O)NR^sR^{s1}$, $-SC(NR^t)NR^sR^{s1}$, $-N(R^t)$ $C(O)R^s$, $-N[C(O)R^s][C(O)R^{s1}]$, $-N(OR^t)C(O)R^s$, $-N(R^t)$ $C(NR^{t1})R^s$, $-N(R^t)N(R^{t1})C(O)R^s$, $-N[C(O)R^{g2}]NR^sR^{s1}$. $-N(R^t)C(S)R^s$, $-N(R^t)S(O)R^s$, $-N(R^t)S(O)OR^s$, $-N(R^t)$ $-N[S(O)_2R][S(O)_2R^{s1}],$ $S(O)_2R^s$, $-N(R^t)S(O)_2OR^s$, $\begin{array}{lll} & (S_1)_2(R_1^s, R_2^s)_2(R_1^s, R_2^s)_2(R_1^s)_2(R_$ $-N\{[C(O)]_2R^s\}\{[C(O)]_2R^{s1}\},\ -N(R')[C(O)]_2NR^{s2}R^{s1},$ $-N(R^t)[C(O)]_2OR^s$, $-N\{[C(O)]_2OR^s\}\{[C(O)]_2$ OR^{s1} , $-N\{[C(O)]_2NR^sR^{s1}\}\{[C(O)]_2NR^{s2}R^{s3}\}$, $-[N(R^t)C(R^t)]_2NR^{s2}R^{s3}\}$ $(O)][N(R^{t1})C(O)]OR^{s}, \quad -N(R^{t})C(NR^{t1})OR^{s},$ $(NOH)R^s$, $N(R^t)C(NR^{t1})SR^s$, $N(R^t)C(NR^{t1})NR^sR^{s1}$; and $-N = C(R^t)NR^sR^{s1}$; and

each R^s, R^{s1}, R^{s2}, R^{s3} and R^{s4} independently of one another denotes hydrogen or a group selected from among C₁₋₆alkyl, 2-6 membered heteroalkyl, C₁₋₆haloalkyl, C₃₋₁₀cycloalkyl, C_{4-16} cycloalkylalkyl, C_{6-10} aryl, C_{7-16} arylalkyl, 5-12 membered hetero-aryl, 6-18 membered heteroarylalkyl, 3-14 membered heterocycloalkyl and 4-14 membered heterocycloalkylalkyl, where R^s together with R^{s1} and/or R^{s2} and/or R^{s3} and/or R^t may form a 3-8 membered heterocyclalkyl residue via a shared C-, N-O- or S-atom, R^s , R^{s1} , R^{s2} , R^{s3} and R^{s4} independently optionally being substituted by one or more identical or different R^{t2} ; and each R^t , R^{t1} and R^{t2} is selected independently of one another from among hydrogen, C_{1-6} alkyl, 2-6 membered heteroalkyl, C_{1-6} haloalkyl, C_{3-10} cycloalkyl, C_{4-16} cycloalkylalkyl, C_{6-10} aryl, C_{7-16} arylalkyl, 5-12 membered heteroaryl, 6-18 membered heteroarylalkyl, 3-14 membered heterocycloalkyl and 4-14 membered heterocycloalkylalkyl, where R^t together with R^{t1} may form a 3-8 membered heterocyclalkyl residue via a shared C-, N-, O- or S-atom, and

each R^{ν} and $R^{\nu 1}$ is selected independently of one another from among hydrogen, C₁₋₆alkyl, 2-6 membered heteroalkyl, C_{1-6} haloalkyl, where R^{ν} together with $R^{\nu 1}$ may form a 3-8 membered heterocyclalkyl residue via a shared C-, N-, O- or S-atom, optionally in the form of the prodrugs, the tautomers, the racemates, the enantiomers, the diastereomers, the prodrugs and the mixtures thereof, and optionally the pharmacologically acceptable salts thereof.

In a preferred embodiment R² denotes a group selected from among C₃₋₈cycloalkyl, 3-8 membered heteroalkyl, 3-8 -NC and —NO₂.

In another preferred embodiment R^2 denotes C_{1-4} -alkyl. In another preferred embodiment R² denotes —CH₃ or

In another preferred embodiment R¹ denotes phenyl or pyridyl, optionally substituted by one or more identical or different R5.

In another preferred embodiment R⁵ denotes a group selected from among R^m , R^n ; and each R^m independently of one another denotes hydrogen or a group selected from among C₁₋₄alkyl, C₄₋₆cycloalkyl, methoxyethyl, cyclopropylmethyl, phenyl, naphthyl, benzyl, 5-6 membered heteroaryl, 4-6 membered heterocycloalkyl, wherein R^m is optionally independently substituted by one or more identical or different R^n and/or R^{o4} , and each R^n denotes a suitable group and is selected independently of one another from among =O, $\begin{array}{l} -\text{OH, } -\text{OCH}_3, \ -\text{OC}_2\text{H}_5, \ \text{OCF}_3, \ -\text{OCHF}_2, \ -\text{SCH}_3, \\ = & \text{NOH, } = & \text{NOCH}_3, \ -\text{NR}^o\text{R}^{o1}, \ -\text{F, } -\text{Cl, } -\text{Br, } -\text{CF}_3, \\ -\text{CN, } -\text{NO}_2, \ -\text{N}_3, \ -\text{S(O)}\text{R}^o, \ -\text{S(O)}_2\text{R}^o, \ -\text{C(O)}\text{R}^o, \end{array}$ $-C(O)OR^{\circ}$, $-C(O)NR^{\circ}R^{\circ 1}$, $-OC(O)R^{\circ}$, $-OC(O)OR^{\circ}$, $-OC(O)NR^{o}R^{o1}$, $--N(R^s)C(O)R^o$, $-N(R^s)S(O)R^o$. $-N(R^s)S(O)_2R^o$, $-N(R^s)S(O)_2NR^oR^{o1}$, $-N(R^s)C(O)OR^o$.

—N(R^s)C(O)NR° R^{o1} , and each R^o , R^{o1} and R^{o4} independently of one another denotes hydrogen or a group selected from among C_{1-4} alkyl, 2-6 membered heteroalkyl, C_{3-6} cycloalkyl, C_{4-10} cycloalkylalkyl, phenyl, benzyl, 5-6 membered heteroaryl, C_{4-6} heterocycloalkyl, where R^o together 5 with R^{o1} or R^s may form a 3-8 membered heterocyclalkyl residue via a shared C-, N-, O- or S-atom, wherein R^o , R^{o1} and R^{o4} is optionally independently substituted by one or more identical or different R^q and/or R^{q4} , and

each R^p denotes a suitable group and is selected independently of one another from among =O, -OH, methoxy, ethoxy, isopropoxy, -OCF₃, -OCHF₂, -SCH₃, amino, methylamino, dimethylamino, ethylamino, isopropylamino, morpholine, piperidine, pyrrolidine, piperazine, N-methylpiperazine, acetyl, methylsulfonyl, ethylsulfonyl, isopropylsulfonyl, methoxycarbonyl, ethoxycarbonyl, -F, -Cl, -Br, -CF₃, -CN, -S(O)₂C₂H₅, -S(O)₂CH₃, and each R^{q4} denotes a suitable group and is independently of one another selected from among C_{1-4} alkyl, 4-6 membered heteroalkyl, C_{4-6} cycloalkyl, C_{4-7} cycloalkylalkyl, phenyl, benzyl, 5-6 membered heteroaryl, 6-8 membered heteroarylalkyl, 4-6 membered heterocycloalkylalkyl, and

each R^s independently of one another denotes hydrogen or a group selected from among C_{1-4} alkyl, 2-6 membered heteroalkyl, C_{3-8} cycloalkyl, C_{4-10} cycloalkylalkyl, phenyl, benzyl, 5-6 membered heteroaryl, 6-12 membered heteroarylalkyl, 3-8 membered heterocycloalkyl and 4-10 membered heterocycloalkylalkyl.

In another preferred embodiment R^{q4} denotes a suitable 30 group and is independently of one another selected from among methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, tert-butyl, oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropylmethyl, methoxyethyl, phenyl, benzyl, pyridyl, pyrimidinyl, pyridazinyl, imida-35 zolyl, pyrazolyl, thiazolyl.

In another preferred embodiment R⁵ denotes a group selected from among R^n , and each R^n denotes a suitable group and is selected independently of one another from among methoxy, ethoxy, $-\tilde{F}$, -Cl, $C(O)R^o$, $-C(O)NR^oR^{o1}$, and each R° and R° independently of one another denotes hydrogen or a group selected from among methyl, ethyl, prop-2-yl, prop-1-yl, methoxyethyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropylmethyl, morpholine, piperidine, pyrrolidine, piperazine, or where Ro and Ro1 form a cyclic 45 amine, selected from morpholine, piperazine, homomorpholine, homopiperazine, piperidine, pyrrolidine, wherein R^o and R^{o1} are independently optionally substituted by one or more identical or different R^p and/or R^{q4} , and each R^p denotes a suitable group and is selected independently of one another 50 from among =O, -OH, methoxy, ethoxy, isopropoxy, amino, methylamino, dimethylamino, ethylamino, isopropylamino, acetyl, methylsulfonyl, ethylsulfonyl, isopropylsulfonyl, methoxycarbonyl, ethoxycarbonyl, —F, —Cl, —Br,

each R^{q4} denotes a suitable group and is independently of one another selected from among methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, tert-butyl, morpholinyl, piperidinyl, pyrrolidinyl, piperazinyl, N-methylpiperazinyl, oxetanyl, tetrahydrofuranyl, tetrahydrothiophenyl, tetrahydrothiophenyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropylmethyl, methoxyethyl, phenyl, benzyl, pyridyl, pyrimidinyl, pyridazinyl, imidazolyl, pyrazolyl, thiazolyl.

In another preferred embodiment R¹ denotes pyridyl, and 65 wherein R⁵ and R⁵ are selected from among methyl, ethyl, n-propyl, isopropyl, cyclopropyl, methoxy, —CF₃.

8

In another preferred embodiment R¹ denotes phenyl, and wherein R⁵ wherein R⁵ are selected from among R", and each R" denotes a suitable group and is selected independently of one another from among methyl, methoxy, ethoxy, —F, —Cl, C(O)R°, —C(O)NR°R°¹, and

each R^o and R^{o1} independently of one another denotes hydrogen or a group optionally substituted by one or more identical or different R^p and/or R^{q4} , selected from among methyl, ethyl, prop-2-yl, prop-1-yl, methoxyethyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropylmethyl, morpholine, piperidine, pyrrolidine, piperazine, or where R^o and R^{o1} form a cyclic amine, selected from morpholine, piperazine, homomorpholine, homopiperazine, piperidine, pyrrolidine, optionally substituted by one or more identical or different R^p and/or R^{q4} , and

each R^p denotes a suitable group and is selected independently of one another from among =O, —OH, methoxy, ethoxy, isopropoxy, amino, methylamino, dimethylamino, ethylamino, isopropylamino, acetyl, methylsulfonyl, ethylsulfonyl, isopropylsulfonyl, methoxycarbonyl, ethoxycarbonyl, —F, —Cl, —Br, —CF₃, —CN, and

each R⁹⁴ denotes a suitable group and is independently of one another selected from among methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, tert-butyl, morpholinyl, piperidinyl, pyrrolidinyl, piperazinyl, N-methylpiperazinyl, oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, tetrahydrothiophenyl, 1,1-dioxo-tetrahydrothiophenyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropylmethyl, methoxyethyl, phenyl, benzyl, pyridyl, pyrimidinyl, pyridazinyl, imidazolyl, pyrazolyl, thiazolyl.

In another preferred embodiment R³ denotes phenyl or pyridyl, optionally substituted by one or more identical or different R⁴.

In another preferred embodiment R^4 denotes a group selected from among R^a , R^b and R^a substituted by one or more identical or different R^b and/or R^c ; and

each R^a independently of one another is selected from among hydrogen, methyl, ethyl, and each R^b denotes a suitable group and is selected independently of one another from among —OCH₃, —NH₂, —NHCH₃, —NHC₂H₅, —F, —Cl, —Br, —CF₃, —CN.

In another preferred embodiment R^3 denotes pyridyl, optionally substituted by one or more identical or different R^4 .

In another preferred embodiment R³ denotes pyridyl and wherein R⁴ and R⁴ are selected from among methyl, ethyl, amino, methylamino, ethylamino. The compounds, or the pharmacologically effective salts thereof, according to the present invention can be used as medicaments.

The compounds, or the pharmacologically effective salts thereof, according to the present invention can be used for preparing a medicament with an antiproliferative activity.

The present invention also relates to pharmaceutical preparations, containing as active substance one or more compounds of general formula (1) according to the present invention or the pharmacologically effective salts thereof, optionally in combination with conventional excipients and/ or carriers.

The present invention also relates to compounds according to formula (1) for use in the treatment and/or prevention of cancer, infections, inflammatory and autoimmune diseases.

The present invention also relates to the use of compounds of general formula (1) according to the present invention for preparing a medicament for the treatment and/or prevention of cancer, infections, inflammatory and autoimmune diseases

The present invention also relates to pharmaceutical preparation comprising a compound of general formula (1) according to the present invention and at least one other cytostatic or cytotoxic active substance, different from formula (1), optionally in the form of the tautomers, the racemates, the enantiomers, the diastereomers and the mixtures thereof, as well as optionally the pharmacologically acceptable salts thereof.

DEFINITIONS

As used herein the following definitions apply, unless stated otherwise

By alkyl substituents are meant in each case saturated, unsaturated, straight-chain or branched aliphatic hydrocarbon groups (alkyl group) and this includes both saturated alkyl groups and unsaturated alkenyl and alkynyl groups. Alkenyl substituents are in each case straight-chain or branched, unsaturated alkyl groups, which have at least one double bond. By alkynyl substituents are meant in each case straight-chain or branched, unsaturated alkyl groups, which have at least one triple bond.

The term heteroalkyl refers to groups which can be derived from alkyl as defined above in to its broadest sense by replacing one or more of the groups —CH3 in the hydrocarbon 25 chains independently of one another by the groups —OH, —SH or —NH2, one or more of the groups —CH2— independently of one another by the groups —O—, —S— or —NH—, one or more of the groups

by the group

one or more of the groups =CH= by the group =NH or one or 45 more of the groups =CH by the group =NH or one or 45 more of the groups =CH by the group =N, while in all only a maximum of three heteroatoms may be present in a heteroalkyl, there must be at least one carbon atom between two oxygen and between two sulphur atoms or between one oxygen and one sulphur atom and the group as a whole must have 50 chemical stability.

It flows from the indirect definition/derivation from alkyl that heteroalkyl is made up of the sub-groups of saturated hydrocarbon chains with hetero-atom(s), heteroalkenyl and heteroalkynyl, while further subdivision into straight-chain 55 (unbranched) and branched may be carried out. If a heteroalkyl is supposed to be substituted, the substitution may take place independently of one another, in each case monoor polysubstituted, at all the hydrogen-carrying oxygen, sulphur, nitrogen and/or carbon atoms. Heteroalkyl itself may be 60 linked to the molecule as substituent both through a carbon atom and through a heteroatom.

By way of example, the following representative compounds are listed: dimethylaminomethyl; dimethylaminoethyl (1-dimethylaminoethyl); dimethylaminopropyl (1-dimethylaminopropyl, 2-dimethylaminopropyl); diethy-

laminomethyl; diethylaminoethyl (1-diethylaminoethyl, 2-diethylaminoethyl); diethylaminopropyl (1-diethylaminopropyl, 2-diethylaminopropyl); diisopropylaminoethyl (1-diisopropylaminoethyl, 2-di-isopropylaminoethyl); bis-2-methoxyethylamino; [2-(dimethylamino-ethyl)-ethyl-amino]-methyl; 3-[2-(dimethylaminoethyl)-ethyl-amino]-propyl; hydroxymethyl; 2-hydroxyethyl; 3-hydroxypropyl; methoxy; ethoxy; propoxy; methoxymethyl; 2-methoxyethyl etc.

Halogen refers to fluorine, chlorine, bromine and/or iodine atoms.

 C_{1-3} haloalkoxy is meant to be C_{1-3} haloalkyl-O—.

By cycloalkyl is meant a mono, bicyclic or spirocyclic ring, while the ring system may be a saturated ring or, however, an unsaturated, non-aromatic ring, which may optionally also contain double bonds, such as for example cyclopropyl, cyclopropenyl, cyclobutyl, cyclobutenyl, cyclopentyl, cyclopentyl, cyclopentyl, cyclohexyl, cyclohexenyl, norbornyl and norbornenyl.

Cycloalkylalkyl includes a non-cyclic alkyl group wherein a hydrogen atom bound to a carbon atom, usually to a terminal C atom, is replaced by a cycloalkyl group.

Aryl relates to monocyclic or bicyclic aromatic rings with 6-10 carbon atoms such as phenyl and naphthyl, for example. Arylalkyl includes a non-cyclic alkyl group wherein a hydrogen atom bound to a carbon atom, usually to a terminal 35 C atom, is replaced by an aryl group.

By heteroaryl are meant mono- or bicyclic aromatic rings, which instead of one or more carbon atoms contain one or more, identical or different hetero atoms, such as e.g. nitrogen, sulphur or oxygen atoms. Examples include furyl, thie-40 nyl, pyrrolyl, oxazolyl, thiazolyl, isoxazolyl, isothiazolyl, pyrazolyl, imidazolyl, triazolyl, tetrazolyl, oxadiazolyl, thiadiazolyl, pyridyl, pyrimidyl, pyridazinyl, pyrazinyl and triazinyl. Examples of bicyclic heteroaryl groups are indolyl, isoindolyl, benzofuryl, benzothienyl, benzoxazolyl, benzothiazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolyl, benzopyrazolyl, indazolyl, isoquinolinyl, quinolinyl, quinoxalinyl, cinnolinyl, phthalazinyl, quinazolinyl and benzotriazinyl, indolizinyl, oxazolopyridyl, imidazopyridyl, naphthyridinyl, indolinyl, isochromanyl, chromanyl, tetrahydroisoquinolinyl, isoindolinyl, isobenzotetrahydrofuryl, isobenzotetrahydrothienyl, isobenzothienyl, benzoxazolyl, pyridopyridyl, benzotetrahydrofuryl, benzotetrahydrothienyl, purinyl, benzodioxolyl, triazinyl, phenoxazinyl, phenothiazinyl, pteridinyl, benzothiazolyl, imidazopyridyl, imidazothiazolyl, dihydrobenzisoxazinyl, benzisoxazinyl, benzoxazinyl, dihydrobenzisothiazinyl, benzopyranyl, benzothiopyranyl, coumarinyl, isocoumarinyl, chromonyl, chromanonyl, pyridyl-N-oxide tetrahydroquinolinyl, dihydroquinolinyl, dihydroquinolinonyl, dihydroisoquinolinonyl, dihydrocoumarinyl, dihydroisocoumarinyl, isoindolinonyl, benzodioxanyl, benzoxazolinonyl, pyrrolyl-N-oxide, pyrimidinyl-N-oxide, pyridazinyl-N-oxide, pyrazinyl-N-oxide, quinolinyl-N-oxide, indolyl-N-oxide, indolinyl-N-oxide, isoquinolyl-N-oxide, quinazolinyl-N-oxide, quinoxalinyl-Noxide, phthalazinyl-N-oxide, imidazolyl-N-oxide, isoxoxazolyl-N-oxide, azolyl-N-oxide, thiazolyl-N-oxide, indolizinyl-N-oxide, indazolyl-N-oxide, benzothiazolyl-N-

oxide, benzimidazolyl-N-oxide, pyrrolyl-N-oxide, oxadiazolyl-N-oxide, thiadiazolyl-N-oxide, triazolyl-N-oxide, tetrazolyl-N-oxide, benzothiopyranyl-5-oxide and benzothiopyranyl-S. S-dioxide.

Heteroarylalkyl encompasses a non-cyclic alkyl group ⁵ wherein a hydrogen atom bound to a carbon atom, usually to a terminal C atom, is replaced by a heteroaryl group.

Heterocycloalkyl relates to saturated or unsaturated, nonaromatic mono-, bicyclic, spirocyclic or bridged bicyclic rings comprising 3-14 carbon atoms, which instead of one or more carbon atoms carry heteroatoms, such as nitrogen, oxygen or sulphur. Examples of such heterocyloalkyl groups are tetrahydrofuryl, pyrrolidinyl, pyrrolinyl, imidazolidinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, piperidinyl, piperazinyl, indolinyl, isoindolinyl, morpholinyl, thiomorpholinyl, homomorpholinyl, homopiperidinyl, homopiperazinyl, homothiomorpholinyl, thiomorpholinyl-5-oxide, thiomorpholinyl-S,S-dioxide, tetrahydropyranyl, tetrahydrothienyl, homothiomorpholinyl-S,S-dioxide, oxazolidinonyl, dihy- 20 dropyrazolyl, dihydropyrrolyl, dihydropyrazinyl, dihydropyridyl, dihydropyrimidinyl, dihydrofuryl, dihydropyranyl, tettetrahydrothienyl-S,S-dioxide, rahydrothienyl-5-oxide, homothiomorpholinyl-5-oxide, 2-oxa-5-azabicyclo[2,2,1] heptane, 8-oxa-3-aza-bicyclo[3.2.1]octane, 3.8-diaza-bicy- 25 clo[3.2.1]octane, 2,5-diaza-bicyclo[2.2.1]heptane, diaza-bicyclo[3.2.1]octane, 3.9-diaza-bicyclo[4.2.1]nonane and 2.6-diaza-bicyclo[3.2.2]nonane, 3,9-diaza-spiro[5.5]undecane, 2,9-diaza-spiro[5.5]undecane, 2,8-diaza-spiro[4.5] decane, 1,8-diaza-spiro[4.5]decane, 3-aza-spiro[5.5]undecane, 1,5-dioxa-9-aza-spiro[5.5]undecane, 2-oxa-9-azaspiro[5.5]undecane, 3-oxa-9-aza-spiro[5.5]undecane, 8-azaspiro[4.5]decane, 2-oxa-8-aza-spiro[4.5]decane, 1,4-dioxa-8-aza-spiro[4.5]decane, 3-aza-spiro[5.6]dodecane, 3,9diaza-spiro[5.6]dodecane, 9-oxa-3-aza-spiro[5.6]dodecane and 1,3,8-triaza-spiro[4.5]decane.

Heterocycloalkylalkyl relates to a non-cyclic alkyl group wherein a hydrogen atom bound to a carbon atom, usually to a terminal C atom, is replaced by a heterocycloalkyl group.

The following Examples illustrate the present invention without restricting its scope.

General Procedure 1 (GP1): Iodination of Pyrimidines or Pyridines

A solution of the pyrimidine or pyridine (1.0 eq.) in acetic 45 acid is cooled to 0° C. and NIS (1.0 eq.) is added in one portion. The reaction mixture is stirred at RT until conversion of the starting material is completed (2-6 h). The mixture is poured on ice-cooled water and treated with a mixture of 5% $Na_2S_2O_3$ and 10% $NaHCO_3$. The precipitate is filtered off, 50 intensely washed with water and dried under vacuum at 40° C. The crude product can be used without further purification or is further purified by chromatography on silica gel using a $CH_2Cl_2/MeOH$ gradient.

General Procedure 2 (GP2): Sonogashira Reaction Method 1:

The halide (1.0 eq.) is dissolved in DMF or THF and 0.1 eq. Pd-catalyst (e.g. $PdCl_2(PPh_3)_2$ or $Pd(PPh_3)_4$) and CuI (0.1 eq.) are added. Subsequently, triethylamine (10.0 eq.) and finally the alkyne (1.5 eq.) are added and the reaction mixture 60 is stirred at 65° C. The reaction is monitored by LC-MS. If the iodide is not completed converted after 4 h, additional amounts of alkyne are added in small portions. The product either precipitates from the reaction mixture (and is filtered off and if necessary re-crystallized) and/or, after removal of 65 the solvent, is purified by preparative RP-HPLC or chromatography on silica gel.

12

Method 2:

The halide (1.0 eq.) is dissolved in DMSO and $Pd(PPh_3)_4$ (0.1 eq.) and CuI (0.1 eq.) are added. Subsequently, diisopropylamine (0.9 eq.) and finally the alkyne (1.2 eq.) are added. The reaction mixture is put on a pre-heated hot plate and stirred at 80° C. The reaction is monitored by LC-MS. If the halide is not completed converted after 4 h, additional amounts of alkyne are added in small portions. The product either precipitates from the reaction mixture (and is filtered off and if necessary re-crystallized) and/or, after removal of the solvent, is purified by preparative RP-HPLC or flash chromatography on silica gel.

General Procedure 3 (GP3): Desilylation of Alkynes

The TMS-alkyne (1.0 eq.) is dissolved in MeOH, $\rm K_2CO_3$ (0.5 eq.) is added in one portion and the reaction mixture is stirred at RT until conversion is complete (3-16 h). The solvent is removed in vaccuo, the crude product is dissolved in ethyl acetate and the organic phase is extracted with water. The organic phase is dried, filtered off and the solvent removed in vaccuo. The product is either used without further purification or purified by chromatography on silica gel using a DCM/MeOH or (cyclo-)hexane/ethyl acetate.

General Procedure 4 (GP4): Suzuki Coupling

The 4-chloropyrimidine (1.0 eq.) is dissolved in DME/water (20:1 v/v), boronic acid (1.3 eq.), K₂CO₃ (2.0 eq.) and Pd(PPh₃)₄ (0.2 eq.) are added and the reaction mixture is stirred for 4 h under reflux. In case the conversion of the starting material is not complete, additional amounts of boronic acid and Pd-catalyst are added and the reaction is run over night under reflux. After cooling to RT water is added. The precipitate is filtered off. In cases where the product is not precipitated it is extracted with diethylether, the organic phase is dried, filtered off, and the solvent removed under reduced pressure. The obtained product can either be used without further purification or is purified by chromatography. General Procedure 8 (GP8): Saponification of Esters

The ester is taken up in either THF or dioxane, 1.1-1.5 eq. of 1 N NaOH are added and the mixture is heated under reflux until reaction control shows complete conversion of the starting material. The product either precipitates from the reaction mixture and is used without additional purification steps or can further be purified by chromatography.

General Procedure 9 (GP9): Amide Formation with Amines A mixture of 0.21 mmol starting material, 0.31 mmol TBTU or HATU and 0.42 mmol Huenig's base in 2 mL DMSO is stirred for 5 min Subsequently 0.31 mmol of amine is added and the resultant mixture is stirred at RT over night. Purification is performed via preparative RP-HPLC yielding after evaporation of the solvent the desired product.

General Procedure 10 (GP10) Amide Formation with Acid Chlorides

To a mixture of 0.13 mmol of starting material and 67 μ L Huenig's base in 2 mL THF is added 0.26 mmol acid chloride. The reaction mixture is stirred over night at RT. The solvent is evaporated and the residue is taken up in 1 mL DMSO. Insoluble material is filtered off and the resulting solution is purified via preparative RP-HPLC yielding after evaporation of the solvent the desired product.

General Procedure 11 (GP11): Urea Formation with Isocyanates

To a mixture of 0.16 mmol of starting material and 64.4 μ L Huenig's base in 2 mL THF is added 0.49 mmol isocyanate. The reaction mixture is stirred over night at RT. The solvent is evaporated and the residue is taken up in 1 mL DMSO. Insoluble material is filtered off and the resulting solution is purified via preparative RP-HPLC yielding after evaporation of the solvent the desired product.

35

A mixture of 0.34 mmol amine and 0.34 mmol N,N'-carbonyldiimidazole and 0.34 mmol 1,8-diazabicyclo[5.4.0]undec-7-ene is stirred for 10 min at RT. Then 0.32 mmol of starting material is added in one portion. The reaction mixture is heated at 100° C. for 1 h in the microwave. The solvent is evaporated and the residue is taken up in 1 mL DMSO. Insoluble material is filtered off and the resulting solution is purified via preparative RP-HPLC yielding the desired product.

General Procedure 13 (GP13): Amide formation with carbonic acids

A mixture of 0.62 mmol carbonic acid, 0.93 mmol TBTU and 1.2 mmol Huenig's base in 2 mL DMSO is stirred for 5 min. Subsequently 0.31 mmol of starting material is added and the resultant mixture is stirred at RT over night. Purification is performed via preparative RP-HPLC yielding after evaporation of the solvent the desired product.

Intermediates A

A-1a) 6-Methyl-3H-pyrimidin-4-one

 $100\,\mathrm{g}$ (0.70 mol) 4-Hydroxy-2-mercapto-6-methylpyrimidine and 300 g Raney-Nickel are suspended in water (1000 mL) and the suspension is heated and stirred under reflux over 40 night. Full conversion is detected by TLC (10% MeOH in DCM). The catalyst is filtered off over celite and the filtrate is evaporated to give crude product as a pale green solid. The product is used without further purification for the next step.

A-1b) 5-Iodo-6-methyl-3H-pyrimidin-4-one

To a stirred solution of 70 g (0.64 mol) 4-hydroxy-6-methylpyrimidine in acetic acid is added 127 g (0.56 mol) NIS portion wise at RT within 15 min. The reaction is stirred for 30 h at RT until all starting material is consumed. The reaction mixture is diluted with water and the solid product is filtered off and washed with sodium thiosulfate solution to remove excess iodine. After drying, the desired product is obtained as a pale brown solid (90 g; 60%) which is used without further purification.

14

A-1) 4-Chloro-5-iodo-6-methyl-pyrimidin

A suspension of 90 g (0.38 mol) 4-hydroxy-5-iodo-6-methylpyrimidine in 600 mL POCl₃ is heated for 1 h at 90° C. The reaction mixture is concentrated under reduced pressure and the residue is poured into crushed ice. The precipitated solid is collected by filtration and washed with water. After drying, the desired product is obtained as a solid (90 g; 93%).

A-2a) 6-Ethyl-3H-pyrimidin-4-one

90 g (0.58 mol) 4-Hydroxy-2-mercapto-6-ethyl pyrimidine and 270 g Raney-Nickel are suspended in water (1000 mL). The suspension is heated and stirred under reflux over night. Full conversion is detected by TLC (10% MeOH in DCM). The catalyst is filtered off over celite and the filtrate is evaporated to give crude product as a pale green solid (70.0 g; 98%). The product is used without further purification for the next step.

A-2b) 6-Ethyl-5-iodo-3H-pyrimidin-4-one

To a stirred solution of 70 g (0.56 mol) 4-hydroxy-6-ethyl pyrimidine in acetic acid is added 127 g (0.56 mol) NIS portion wise at RT within 15 min. The reaction is stirred for 30 h at RT until all starting material is consumed. The reaction mixture is diluted with water and the solid product is filtered off and washed with sodium thiosulfate solution to remove excess iodine. After drying, the desired product is obtained as a solid (90 g; 64%) which is used without further purification.

A-2c) 4-Chloro-5-iodo-6-ethyl-pyrimidin

A suspension of 90 g (0.36 mol) 4-hydroxy-5-iodo-6-ethyl pyrimidine in 600 mL POCl₃ is heated for 1 h at 90° C. The reaction mixture is concentrated under reduced pressure and

20

35

55

the residue is poured into crushed ice. The precipitated solid is collected by filtration and washed with water. After drying, the desired product is obtained as a solid (65 g; 67%).

A-2) 5-Iodo-3-trifluoromethyl-pyridin-2-ylamine

The title compound is synthesized according to general procedure GP1 starting from 5.0~g~(31~mmol)~3-trifluoro-pyridin-2-ylamine and 6.9~g~(31~mmol)~NIS. Yield after precipitation from the reaction mixture: 6.78~g~(76%).

A-3) 6-Trifluoromethyl-5-iodo-pyridin-2-ylamine

The title compound is synthesized according to general procedure GP1 starting from 4.8 g (30 mmol) 6-trifluoromethyl-pyridin-2-ylamine and 6.7 g (30 mmol) NIS. Yield after precipitation from the reaction mixture and isolation of additional product from the mother liquid by chromatography in silica gel: 5.73 g (67%).

A-4) 5-Iodo-6-methyl-pyridin-2-ylamine

The title compound is synthesized according to general procedure GP1 starting from 2.7 g (25 mmol) 6-methylpyridin-2-ylamine and 5.6 g (25 mmol) NIS. Small amounts 60 of the corresponding bis-iodopyridine are formed during the reaction (LC-MS). The reaction mixture is poured into ice upon which the bis-iodo product precipitated. The mother liquid is treated with a mixture of 5% Na₂S₂O₃ and 10% NaHCO₃ and is subsequently neutralized by addition of 4 N 65 NaOH. The precipitated product is collected by filtration and washed with water. Yield: 4.95 g (85%).

The title compound is synthesized according to general procedure GP1 starting from 10.0 g (83 mmol) 6-ethyl-pyri15 din-2-ylamine and 18.4 g (83 mmol) NIS. Yield after precipitation from the reaction mixture: 18.0 g (89%).

A-6) 5-Iodo-4-methyl-pyridin-2-ylamine

The title compound is synthesized according to general procedure GP1 starting from 2.0 g (18 mmol) 4-methylpyridin-2-ylamine and 4.2 g (18 mmol) NIS. Yield after precipitation from the reaction mixture: 3.6 g (83%).

A-7) 4-Ethyl-5-iodo-pyridin-2-ylamine

The title compound is synthesized according to general procedure GP1 starting from 5.0 g (41 mmol) 4-ethyl-pyridin-2-ylamine and 9.2 g (41 mmol) NIS. Yield after precipitation from the reaction mixture and isolation of additional product from the mother liquid by chromatography using silica gel: 10.3 g (100%).

A-8) 4-Trifluoromethyl-5-iodo-pyridin-2-ylamine

The title compound is synthesized according to general procedure GP1 starting from 20.0 g (123 mmol) 4-trifluoromethyl-pyridin-2-ylamine and 27.8 g (123 mmol) NIS. Yield after precipitation from the reaction mixture and isolation of additional product from the mother liquid by chromatography in silica gel: 20.3 g (57%).

A-9) 3-Fluoro-5-iodo-pyridin-2-ylamine

The title compound is synthesized according to general procedure GP1 starting from 200 mg (1.78 mmol) 3-fluoropyridin-2-ylamine and 401 mg (1.78 mmol) NIS. Yield after precipitation from the reaction mixture: 380 mg (90%).

A-10) 2-Methyl-5-trimethylsilanylethynyl-pyridine

The title compound is synthesized according to general procedure GP2 starting from 2.0 g (11.6 mmol) 5-bromopyridin-2-ylamine and 2.3 mL (16.3 mmol) 1-trimethylsilylethyne using 68 mg (0.36 mmol) CuI, 305 mg (1.2 mmol) triphenylphosphine, 213 mg (0.30 mmol) PdCl₂(PPh₃)₂ and 18 mL (127 mmol) triethylamine in 18 mL dry THF. For the work-up the reaction mixture is diluted with ethyl acetate, the organic phase is extracted with water and brine. The product is purified by chromatography on silica gel using a hexane/ 40 ethyl acetate gradient. Yield: 1.5 g (68%).

A-11) 5-Trimethylsilanylethynyl-pyridin-2-ylamine

The title compound is synthesized according to general procedure GP2 starting from 5.0 g (28.9 mmol) 5-bromopyridin-2-ylamine and 5.7 mL (40.5 mmol) 1-trimethylsilylethyne using 168 mg (0.88 mmol) CuI, 758 mg (2.9 mmol) triphenylphosphine, 533 mg (0.76 mmol) PdCl₂(PPh₃)₂ and 40 mL (288 mmol) triethylamine in 40 mL dry THF. For the work-up the reaction mixture is diluted with ethyl acetate and small amounts of cyclohexane, the organic phase is extracted with water and brine. The product is purified by chromatography on silica gel using hexane/ethyl acetate (10/1 v/v). Yield: 5.0 g (91%).

18

A-12) Methyl-(5-trimethylsilanylethynyl-pyridin-2-yl)-amine

The title compound is synthesized according to general procedure GP2 starting from 4.3 g (23.0 mmol) 5-bromo-2-methylamino-pyridine and 4.5 mL (32.2 mmol) 1-trimethylsilyl-ethyne using 134 mg (0.71 mmol) CuI, 601 mg (2.3 mmol) triphenylphosphine, 420 mg (0.60 mmol) PdCl₂ (PPh₃)₂ and 32 mL (101 mmol) triethylamine in 40 mL dry THF. For the work-up the reaction mixture is diluted with ethyl acetate and small amounts of cyclohexane, the organic phase is extracted with water and brine. The product is purified by chromatography on silica gel using a hexane/ethyl acetate gradient. Yield: 4.0 g (85%).

A-13) Ethyl-(5-trimethylsilanylethynyl-pyridin-2yl)-amine

The title compound is synthesized according to general procedure GP2 starting from 909 mg (4.5 mmol) 5-bromo-2-ethylamino-pyridine and 0.89 mL (6.3 mmol) 1-trimethylsilyl-ethyne using 26 mg (0.13 mmol) CuI, 118 mg (0.45 mmol) triphenylphosphine, 82 mg (0.12 mmol) PdCl₂(PPh₃)₂ and 6.3 mL (45.0 mmol) triethylamine in 7 mL dry THF. For the work-up the reaction mixture is diluted with ethyl acetate and small amounts of cyclohexane, the organic phase is extracted with water and brine. The product is purified by chromatography on silica gel using a hexane/ethyl acetate gradient. Yield: 980 mg (99%).

A-14) 4-Trifluoromethyl-5-trimethylsilanylethynylpyridin-2-ylamine

55

The title compound is synthesized according to general procedure GP2 starting from 12.8 g (44 mmol) 4-trifluorom-

ethyl-5-iodo-pyridin-2-ylamine and 8.8 mL (62 mmol) 1-trimethyl-silyl-ethyne using 844 mg (4.4 mmol) CuI, 3.1 g (4.4 mmol) PdCl₂(PPh₃)₂ and 62 mL (443 mmol) triethylamine in 80 mL dry THF. For the work-up the solvent is removed under reduced pressure, the crude product is taken up in ethyl acetate and the organic phase is extracted with water. The product is purified twice by chromatography on silica gel using a DCM/MeOH gradient. Yield: 5.85 g (51%).

A-15) 6-Trifluoromethyl-5-trimethylsilanylethynylpyridin-2-ylamine

$$\sum_{\text{CF}_3}^{\text{NH}_2}$$

The title compound is synthesized according to general procedure GP2 starting from 5.7 g (20 mmol) 6-trifluoromethyl-5-iodo-pyridin-2-ylamine and 3.9 mL (28 mmol) 1-trimethyl-silyl-ethyne using 379 mg (2.0 mmol) CuI, 1.4 g (2.0 mmol) PdCl₂(PPh₃)₂ and 28 mL (199 mmol) triethylamine in 30 mL dry THF. For the work-up the solvent is removed under reduced pressure, the crude product is taken up in ethyl acetate and the organic phase is extracted with water. The product is purified by chromatography on silica gel using a DCM/MeOH gradient. Yield: 2.83 g (55%).

A-16) 4-Methyl-5-trimethylsilanylethynyl-pyridin-2-ylamine

The title compound is synthesized according to general procedure GP2 starting from 3.3 g (14.1 mmol) 4-methyl-5-iodo-pyridin-2-ylamine and 2.8 mL (19.7 mmol) 1-trimethyl-silyl-ethyne using 81 mg (1.4 mmol) CuI, 296 mg (0.42 mmol) $PdCl_2(PPh_3)_2$, 370 mg (1.4 mmol) triphenylphosphine and 20 mL (141 mmol) triethylamine in 25 mL dry THF. After cooling to RT, the mixture is filtered and the product is isolated from the filtrate by chromatography on silica gel using a DCM/MeOH gradient. Yield: 2.75 g (95%).

A-17) 6-Methyl-5-trimethylsilanylethynyl-pyridin-2-ylamine

The title compound is synthesized according to general procedure GP2 starting from 5.0 g (21.4 mmol) 6-methyl-5-iodo-pyridin-2-ylamine and 4.5 mL (32 mmol) 1-trimethyl-silyl-ethyne using 407 mg (2.1 mmol) CuI, 2.0 g (2.1 mmol) Pd(PPh₃)₄ and 30 mL (214 mmol) triethylamine in 40 mL dry DMF. For the work-up the solvent is removed under reduced pressure and the product is purified twice by chromatography on silica gel using a DCM/MeOH gradient. Yield: 4.2 g (96%).

A-18) 4-Ethyl-5-trimethylsilanylethynyl-pyridin-2-ylamine

The title compound is synthesized according to general procedure GP2 starting from 10.3 g (41.6 mmol) 4-ethyl-5-iodo-pyridin-2-ylamine and 8.2 mL (58.2 mmol) 1-trimethyl-silyl-ethyne using 792 mg (4.2 mmol) CuI, 2.9 g (4.2 mmol) PdCl₂(PPh₃)₂ and 58 mL (416 mmol) triethylamine in 140 mL dry THF. For the work-up the solvent is removed under reduced pressure, the crude product is taken up in ethyl acetate and the organic phase is extracted with water. The product is purified twice by chromatography on silica gel using a cyclohexane/ethyl acetate gradient. Yield: 9.08 g (100%).

A-19) 6-Ethyl-5-trimethylsilanylethynyl-pyridin-2ylamine

55

The title compound is synthesized according to general procedure GP2 starting from 18 g (72.6 mmol) 6-ethyl-5-iodo-pyridin-2-ylamine and 14.4 mL (102 mmol) 1-trim-

15

40

ethyl-silyl-ethyne using 1.38 g (7.3 mmol) CuI, 5.1 g (7.3 mmol) $PdCl_2(PPh_3)_2$ and 101 mL (726 mmol) triethylamine in 100 mL dry THF. For the work-up the solvent is removed under reduced pressure, the crude product is taken up in ethyl acetate and the organic phase is extracted with water. The product is purified twice by chromatography on silica gel using a cyclohexane/ethyl acetate gradient. Yield: 12.73 g (80%).

A-20) 5-Trimethylsilanylethynyl-pyridin-3-ol

The title compound is synthesized according to general procedure GP2 starting from 2.0 g (11.6 mmol) 5-bromo-3-hydroxy-pyridine and 2.3 mL (16.2 mmol) 1-trimethylsilylethyne to using 66 mg (0.3 mmol) CuI, 303 mg (1.2 mmol) triphenylphosphine, 243 mg (0.3 mmol) PdCl₂(PPh₃)₂ and 19 mL (139 mmol) triethylamine in 20 mL dry THF. For the work-up the reaction mixture is diluted with ethyl acetate and small amounts of cyclohexane, the organic phase is extracted with water and brine. The product is purified by chromatography on silica gel using a DCM/MeOH gradient. Yield: 2.0 g (91%).

A-21) 5-Trimethylsilanylethynyl-pyridin-3-ylamine

The title compound is synthesized according to general 55 procedure GP2 starting from 2.0 g (11.6 mmol) 5-bromopyridin-3-ylamine and 2.3 mL (16.2 mmol) 1-trimethylsilylethyne using 66 mg (0.3 mmol) CuI, 303 mg (1.2 mmol) triphenylphosphine, 243 mg (0.3 mmol) PdCl₂(PPh₃)₂ and 19 mL (139 mmol) triethylamine in 20 mL dry THF. For the 60 work-up the reaction mixture is diluted with ethyl acetate and small amounts of cyclohexane, the organic phase is extracted with water and brine. The product is purified by chromatography on silica gel using a DCM/MeOH gradient. The product precipitated on the column and was subsequently 65 extracted from the silica gel with pure MeOH. Yield: 2.0 g (91%).

A-22) 5-Trimethylsilanylethynyl-1H-pyrazolo[3,4-b] pyridine

The title compound is synthesized according to general procedure GP2 starting from 1.0 g (5.1 mmol) 5-bromo-1H-pyrazolo[4,5-b]pyridine and 1.0 mL (7.1 mmol) 1-trimethylsilyl-ethyne using 29 mg (0.15 mmol) CuI, 133 mg (0.51 mmol) triphenylphosphine, 106 mg (0.15 mmol) PdCl₂ (PPh₃)₂ and 8.4 mL (60.6 mmol) triethylamine in 8 mL dry THF. The formed precipitate is filtered off and the product is purified by RP-HPLC using an ACN/H₂O gradient. Yield: 542 mg (50%).

A-23) 5-Trimethylsilanylethynyl-1H-pyrrolo[2,3-b] pyridine

The title compound is synthesized according to general procedure GP2 starting from 3.0 g (15.2 mmol) 5-bromo-1H-pyrrolo[2,3-B]pyridine and 3.0 mL (21.3 mmol) 1-trimethylsilyl-ethyne using 87 mg (0.46 mmol) CuI, 400 mg (1.5 mmol) triphenylphosphine, 312 mg (0.46 mmol) PdCl₂ (PPh₃)₂ and 25.4 mL (182 mmol) triethylamine in 25 mL dry THF. The formed precipitate is filtered off and the product is purified by chromatography on silica gel using a DCM/MeOH gradient. Yield: 3.05 g (94%).

A-24) 6-Trimethylsilanylethynyl-3H-imidazo[4,5-b] pyridine

The title compound is synthesized according to general procedure GP2 starting from 1.2 g (6.1 mmol) 5-bromo-3H-

20

35

40

55

60

imidazol[4,5-b]pyridine and 1.2 mL (8.4 mmol) 1-trimethylsily1-ethyne using 34 mg (0.18 mmol) CuI, 159 mg (0.61 mmol) triphenylphosphine, 128 mg (0.18 mmol) PdCl $_2$ (PPh $_3$) $_2$ and 10.1 mL (72.7 mmol) triethylamine in 10 mL dry THF. The formed precipitate is filtered off and the product is purified by RP-HPLC using an ACN/H $_2$ O gradient. Yield: 606 mg (46%).

A-25) 5-Ethynyl-2-methyl-pyridine

The title compound is synthesized according to general procedure GP3 starting from 2.2 g (12 mmol) 2-methyl-5-trimethylsilanylethynyl-pyridine and 0.80 g (5.8 mmol) $\rm K_2CO_3$ in 13 mL MeOH. The crude product is purified by chromatography on silica gel using a cyclohexane/ethyl acetate gradient. The product is extracted from the organic phase with 1 N HCl and isolated as the hydrochloride after lyophilization. Yield: 1.3 g (73%).

A-26) 5-Ethynyl-pyridin-2-ylamine

The title compound is synthesized according to general procedure GP3 starting from 5.5 g (29 mmol) 5-trimethylsilanylethynyl-pyridin-2-ylamine and 2.0 g (14 mmol) $\rm K_2CO_3$ 45 in 30 mL MeOH. The product is purified by chromatography on silica gel using a hexane/ethyl acetate gradient. Yield: 2.9 g (85%).

A-27) (5-Ethynyl-pyridin-2-yl)-methyl-amine

The title compound is synthesized according to general procedure GP3 starting from 1.5 g (7.3 mmol) methyl-(5-trimethylsilanylethynyl-pyridin-2-yl)-amine and 507 mg (3.7 65 mmol) $\rm K_2CO_3$ in 10 mL MeOH. Yield: 698 mg (56%) after chromatography on silica gel.

The title compound is synthesized according to general procedure GP3 starting from 980 mg (4.5 mmol) TMS-alkyne and 310 mg (2.3 mmol) $\rm K_2CO_3$ in 6 mL MeOH. Yield: 388 mg (59%) after chromatography on silica gel.

A-29) 5-Ethynyl-4-trifluoromethyl-pyridin-2-ylamine

$$CF_3$$
 NH_2

The title compound is synthesized according to general procedure GP3 starting from 5.9 g (22.6 mmol) 4-trifluoromethyl-5-trimethylsilanylethynyl-pyridin-2-ylamine and 1.56 g to (11.3 mmol) $\rm K_2CO_3$ in 50 mL MeOH. The product is purified by chromatography on silica gel using a DCM/MeOH gradient. Yield: 2.97 g (71%).

A-30)
5-Ethynyl-6-trifluoromethyl-pyridin-2-ylamine

$$\bigvee_{CF_3}^{NH_2}$$

The title compound is synthesized according to general procedure GP3 starting from 2.82 g (11.0 mmol) 6-trifluo- romethyl-5-trimethylsilanylethynyl-pyridin-2-ylamine and 757 mg (5.5 mmol) $\rm K_2CO_3$ in 25 mL MeOH. The product is purified by chromatography on silica gel using a cyclohexane/ethyl acetate gradient. Yield: 0.9 g (44%).

A-31) 5-Ethynyl-4-methyl-pyridin-2-ylamine

$$\bigvee_{N}^{\mathrm{NH}_{2}}$$

The title compound is synthesized according to general procedure GP3 starting from 1.8 g (8.8 mmol) 4-methyl-5-trimethylsilanylethynyl-pyridin-2-ylamine and 609 mg (4.4

10

25

35

55

60

mmol) K_2CO_3 in 315 mL MeOH. The product is purified by chromatography on silica gel using a DCM/MeOH gradient. Yield: 1.0 g (86%).

A-32) 5-Ethynyl-6-methyl-pyridin-2-ylamine

The title compound is synthesized according to general procedure GP3 starting from 4.3 g (21.0 mmol) 6-methyl-5- $_{20}$ trimethylsilanylethynyl-pyridin-2-ylamine and 1.5 g (10.5 mmol) $\rm K_2CO_3$ in 30 mL MeOH. The product is purified by chromatography on silica gel using a DCM/MeOH gradient. Yield: 3.6 g.

A-33) 4-Ethyl-5-ethynyl-pyridin-2-ylamine

The title compound is synthesized according to general 40 procedure GP3 starting from 3.3 g (15 mmol) 4-ethyl-5-trimethylsilanylethynyl-pyridin-2-ylamine and 1.04 g (7.5 mmol) $\rm K_2CO_3$ in 30 mL MeOH. The product is purified by chromatography on silica gel using a DCM/MeOH gradient. Yield: 1.78 g (81%).

A-34) 6-Ethyl-5-ethynyl-pyridin-2-ylamine

The title compound is synthesized according to general procedure GP3 starting from 12.23 g (56 mmol) 6-ethyl-5-trimethylsilanylethynyl-pyridin-2-ylamine and 3.87 g (28 mmol) $\rm K_2CO_3$ in 120 mL MeOH. The product is purified by chromatography on silica gel using a DCM/MeOH gradient. Yield: 4.5 g (85%).

A-35) 5-Ethynyl-pyridin-3-ol

The title compound is synthesized according to general procedure GP3 starting from 2.0 g (10.5 mmol) TMS-alkyne and 722 mg (5.2 mmol) $\rm K_2CO_3$ in 10 mL MeOH. Yield: 804 mg (49%) after chromatography on silica gel.

A-36) 5-Ethynyl-pyridin-3-ylamine

The title compound is synthesized according to general procedure GP3 starting from 2.0 g (11 mmol) TMS-alkyne and 722 mg (5.2 mmol) $\rm K_2CO_3$ in 10 mL MeOH. Yield: 1.2 g (74%) after chromatography on silica gel and precipitation from dioxane/HCl.

A-37) 5-Ethynyl-1H-pyrazolo[3,4-b]pyridine

The title compound is synthesized according to general procedure GP3 starting from 542 mg (2.5 mmol) TMS-alkyne and 174 mg (1.3 mmol) K_2CO_3 in 6 mL MeOH. Yield: 330 mg (92%) after extraction.

A-38) 5-Ethynyl-1H-pyrrolo[2,3-b]pyridine

The title compound is synthesized according to general procedure GP3 starting from 3.1 g (14 mmol) TMS-alkyne and 983 mg (7.1 mmol) $\rm K_2CO_3$ in 15 mL MeOH. Yield: 1.2 g (61%) after chromatography on silica gel.

10

25

30

50

55

A-39) 6-Ethynyl-3H-imidazo[4,5-b]pyridine

28

The title compound is synthesized according to general procedure GP3 starting from 706 mg (3.3 mmol) TMS-alkyne and 227 mg (1.6 mmol) $\rm K_2CO_3$ in 6 mL MeOH. Yield: 491 mg (94%) after extraction.

The title compound is synthesized according to general procedure GP2 starting from 250 mg (1.0 mmol) 4-chloro-5-35 iodo-6-methyl-pyrimidin using 123 mg (1.2 mmol) 3-ethynyl-pyridine, 18 mg (0.10 mmol) CuI, 34 mg (0.05 mmol) bis-(triphenylphoshine)palladium(II) chloride, 0.5 mL triethylamine in 2 mL DMF. The reaction mixture is stirred for 3 h at 60° C. After removal of the solvent under reduced 40 pressure, the product is purified by PR-HPLC. Yield: 25 mg (11%).

A-41) 5-(6-Amino-pyridin-3-ylethynyl)-4-chloro-6methyl-pyrimidine

The title compound can be synthesized according to general procedure GP2 starting from 30 g (0.11 mol) 4-chloro-5-iodo-6-methyl-pyrimidin (A-1) and 26.4 g (0.22 mol) of 5-ethynyl-pyridin-2-ylamie (A-36) using 2.1 g (11 mmol) copper iodide and 7.9 g (11 mmol) bis(triphenylphosphine) palladium chloride and triethylamine in 600 mL THF. After work up and chromatography (silica, eluent 5% MeOH in DCM) 13 g (45%) of the desired product is obtained.

The title compound is synthesized according to general procedure GP2 starting from 250 mg (1.0 mmol) 4-chloro-6-ethyl-5-iodo-pyrimidine using 121.5 mg (1.2 mmol) 5-ethynyl-2-methyl-pyridine, 18 mg (0.10 mmol) CuI, 34 mg (0.05 mmol) bis-(triphenylphoshine)palladium(II) chloride, 0.5 mL triethylamine in 2 mL DMF. The reaction mixture is stirred for 3 h at 60° C. After removal of the solvent under reduced pressure, the product is purified by PR-HPLC. Yield: 25 mg (11%).

A-43) 5-(6-Amino-pyridin-3-ylethynyl)-4-chloro-6ethyl-pyrimidine

$$\bigcap_{N \in \mathcal{C}_l} \bigcap_{N \in \mathcal{C}_l} \bigcap_{N$$

To a stirred solution of 60 g (0.22 mol) 4-chloro-5-iodo-6-ethyl-pyrimidin (A-2) in 1200 mL THF under argon is added 4.2 g (22 mmol) CuI and 15.7 g (22 mmol) bis(triphenylphosphine)palladium chloride. The reaction mixture is purged with argon for 30 min 15.7 g (0.22 mol) of 5-ethynyl-pyridin2-ylamie (A-36) and triethylamine is added and the reaction mixture is heated at 60° C. for 4 h. After work up and chromatography (silica, eluent 5% MeOH in DCM) 26 g (45%) of the desired product is obtained.

A-44) 5-(6-Amino-2-methyl-pyridin-3-ylethynyl)-4chloro-6-ethyl-pyrimidine

The title compound is synthesized according to general procedure GP2 starting from 6.0 g (22.3 mmol) 4-chloro-6-ethyl-5-iodo-pyrimidine using 3.5 g (26.8 mmol) 5-ethynyl-6-methyl-pyridin-2-ylamine, 213 mg (1.1 mmol) CuI, 1.57 g

45

50

55

(2.2 mmol) bis-(triphenyl-phoshine)palladium(II) chloride, 15 mL (112 mmol) triethylamine in 100 mL DME. The reaction mixture is stirred over night at RT. After removal of the solvent under reduced pressure, the residue is taken up in water and ethylacetate and the aqueous phase is extracted twice with ethylacetate. The combined organic phases are dried over MgSO₄, filtered over silica and the solvent is removed under reduced pressure. Yield: 2.9 g (64%)

A-45) [5-(4-Chloro-6-ethyl-pyrimidin-5-ylethynyl)pyridin-2-yl]-methyl-amine

The title compound is synthesized according to general procedure GP2 starting from 0.89 g (2.6 mmol) 4-chloro-6-ethyl-5-iodo-pyrimidine using 0.48 g (3.65 mmol) (5-Ethynyl-pyridin-2-yl)-methyl-amine, 40 mg (0.21 mmol) CuI, 180 mg (0.26 mmol) bis-(triphenyl-phoshine)palladium(II) chloride, 3.6 mL (26.1 mmol) triethylamine in 5.5 mL THF. The reaction mixture is stirred over night at 65° C. After removal of the solvent under reduced pressure, the residue is taken up in water and ethylacetate and the aqueous phase is extracted twice with ethylacetate. The combined organic phases are dried over MgSO₄, filtered over silica and the solvent is removed under reduced pressure. Yield: 320 mg ⁴⁰ (46%).

A-46) [5-(4-Chloro-6-ethyl-pyrimidin-5-ylethynyl)pyridin-2-yl]-ethyl-amine

The title compound is synthesized according to general procedure GP2 starting from 4-chloro-6-ethyl-5-iodo-pyrimidine using 5-Ethynyl-pyridin-2-yl)-ethyl-amine (A-28), CuI, bis-(triphenyl-phoshine)palladium(II) chloride, triethylamine in THF. After work-up the desired compound is obtained in good yield and acceptable purity.

H2) 4-Bromo-2,6-difluorobenzoic acid

10 Br H1 LDA, CO2, THF

$$F$$
 O

 F O

 F H2

A solution of diisoporpylamine (32 g, 0.31 mol) in THF (170 ml) is added n-BuLi (116 ml, 0.30 mol) drop wise, while keeping inner temperature below -65° C. The mixture is stirred at -50° C. for 1 h to get LDA solution. To a solution of compound III (50 g, 0.26 mol) in THF (170 mL) is added LDA, while keeping inner temperature below -65° C., then stirred for 1.5 h and CO₂ is added at -65° C., followed adjusting pH to 2-3 with 1 N HCl, and extracted with EtOAc (3×500 ml). The organic layer is dried by Na₂SO₄, concentrated in vacuo to get compound H2 (39.0 g, 63.4%).

H3) 4-Bromo-2,6-difluorobenzoic acid methyl ester

$$B_{r}$$
 H_{2}
 B_{r}
 H_{3}
 H_{2}
 B_{r}
 H_{3}

To a suspension of compound H2 (52.5 g, 0.23 mol) in MeOH (320 mL) is added H₂SO₄ (98%) slowly. The reaction mixture is refluxed until TLC shows the starting material is consumed completely. The solvent is removed and the resulting reside is partioned between saturated NaHCO₃ and EtOAc. The organic layer is dried over anhydrous Na₂SO₄ and concentrated under vacuum to give product 113 (50.0 g, 90.0%).

35

A-47) 2,6-Difluoro-4-(4,4,5,5-tetramethyl-[1,3,2] dioxaborolan-2-yl)-benzoicacid methyl ester

A suspension of compound H3 (50.0 g, 0.20 mol), Bis (pinacolato)diborn (53.3 g, 0.21 mol), Pd(dppf)Cl₂ (15.0 g, 0.02 mol) and KOAc (61.5 g, 0.6 mol) in dixoane (400 mL) is heated to 70° C. quickly for 2 h. The dixoane is evaporated in vacuo and the resulting reside is washed with PE. The collected organic solution is concentrated in vacuo. The crude 30 product is crystallized from PE to give A-47 (52.76 g, 89.0%).

H5) 4-Bromo-2-chloro-6-fluorobenzoic acid

To a solution of diisopropylamine (2.4 g, 24 mmol) in THF (40 mL) is added n-BuLi (8.8 mL, 22 mmol) dropwise at -78° C. The mixture is stirred at -78° C. for 1 h, and then allowed to warm to 0° C. The resulting solution is transferred to a solution of compound H4 (4.16 g, 20 mmol) in THF (60 mL) $_{60}$ at -78° C. and stirred for 1 h, followed bubbling with dry CO $_{2}$ for another 1 h. The obtained solution is quenched with 1 N HCl (50 mL) at 0° C. and extracted with EtOAc (2×50 mL). The organic layers are washed with saturated aq. NaHCO $_{3}$ and brine, dried and concentrated to afford a crude product $_{65}$ 115 (isomer, 5 g, crude) as a brown oil, used for the next step directly.

To a mixture of compound H5 (20 g, 80 mmol) and $\rm K_2CO_3$ (13.2 g, 96 mmol) in DMF (200 mL) is added methyl iodide (23 g, 160 mmol). The mixture is stirred at ambient temperature for 2 h, poured into water (600 mL) and extracted with DCM (2×200 mL). The combined organic layers are washed with water, brine, dried, and concentrated under reduced pressure to provide a brown oil, purified by chromatography on silica gel (PE: EtOAc=100:1) to give compound H6 (isomer, 8 g, 49% for 2 steps) as a light yellow oil.

A-48) 2-Chloro 6-fluoro-4-(4,4,5,5-tetramethyl-[1,3, 2]dioxaborolan-2-yl)-benzoicacid methyl ester

A mixture of compound H6 (18 g, 68 mmol), bis(pinacolato)diboron (17.3 g, 68 mmol), $Pd(dppf)Cl_2$ (2.5 g, 3.4 mmol) and KOAc (20 g, 0.2 mol) in dioxane (300 mL) is heated to 80° C. for 2 h, and concentrated to dryness under reduced pressure. The resulting residue is purified by chromatography on silica gel (PE: EtOAc=150:1) to give crude product as a clear oil, followed recrystallization with hexane to give A-48 (5.5 g, 35.7%) as a white solid.

50

34 H10) 4-Bromo-2-trifluoromethyl-benzoic acid methyl ester

HC1-

Н9

-MeOH, reflux

over night

To a solution containing compound H7 (50 g, 0.26 mmol) $_{15}$ and $\rm K_2CO_3$ (53.8 g, 0.39 mmol) in DMF (200 mL) was added methyl iodide (75.9 g, 0.52 mmol). The mixture was stirred at ambient temperature for 2 h, poured into water (500 mL) and extracted with ethylacetate (2×500 mL). The combined ether layers were washed with water, brine, dried, filtered, and 20 concentrated under reduced pressure to provide compound H8 (45 g, 83%) as a yellow oil, $\rm R_f$ =0.8 (petrolether:ethylacetate=10:1).

A-49A) 2,6-Dichloro-4-(4,4,5,5-tetramethyl-[1,3,2] dioxaborolan-2-yl)-benzoicacid methyl ester

vacuum to give product H10 (23.5 g; 90.0%).

Bis(pinacolato)diboron [Pin $_2$ B $_2$] (44.8 g, 176 mmol), 4,4'-Di-tert-butyl-[2,2]bipyridinyl (120 mg, 0.44 mmol), and [Ir (COD)(OMe)] $_2$ (147 mg, 0.22 mmol) were added to a solution of compound H8 (45 g, 0.22 mol) in heptane (500 mL). The reaction mixture turned from yellow to forest green to brick red within the first minute. The reaction mixture was heated to reflux for 18 h and then partitioned between ethyl acetate and water. The organic extracts were combined, dried over Na $_2$ SO $_4$ and concentrated under reduced pressure. The solid residue was purified by chromatography on silica gel (PE: EtOAc=50:1, detected by boric indicator) to afford the title compound (A-49A) as a white solid (41.0 g, 53%). R $_f$ =0.4 (petrolether: ethylacetate=20:1).

A-49A

A-49B) 2-Trifluoromethyl-4-(4,4,5,5-tetramethyl-[1, 3,2]dioxaborolan-2-yl)-benzoicacid methyl ester

A suspension of compound H10 (23.5 g, 83.3 mmol), Bis (pinacolato)diboron (21 g, 83.3 mmol), Pd(dppf)Cl $_2$ (6 g, 8.3 mmol) and KOAc (24 g, 25 mmol) in DMF (400 mL) was heated to 80° C. quickly for 2 h. The solvent was evaporated in vacuo. The resulting residue was dissolved in PE, filtered and the filtrate was collected. The resulting filtrate was concentrated in vacuo to give crude product, crystallized in petrolether to give A-49B (10.8 g; 40%).

A-49B

To a suspension of compound H11 (30.0 g, 0.11 mol) in 4 M MeOH—HCl (500 mL) was refluxed overnight. The MeOH was evaporated in vacuo. And the resulting reside was partitioned between saturated Na₂CO₃ and EtOAc. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under vacuum to give product H12 (24.0 g; 77%).

A-49C) 2-Trifluoromethoxy-4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-benzoicacid methyl ester

A suspension of compound H12 (24 g, 0.08 mol), Bis (pinacolato)diboron (20.4 g, 0.08 mol) $Pd(dppf)Cl_2(1.0 g)$ and KOAc (15.68 g, 0.16 mol) in dixoane (400 mL) was heated to 80° C. quickly for 2 h. The solvent was evaporated in vacuo and the resulting residue was dissolved in petrolether, filtered and the filtrate was collected. The resulting filtrate was concentrated in vacuo to give crude product, crystallized in petrolether to give A-49C (15.0 g; 63.2%).

$$\bigcap_{N \in \mathcal{N}} \bigcap_{N \in \mathcal{N}} \bigcap_{$$

The title compound is synthesized in analogy to general procedure GP4 starting from 3.9 g (14.3 mmol) 5-(6-Amino-2-methyl-pyridin-3-ylethynyl)-4-chloro-6-ethyl-pyrimidine using 3.7 g (18.6 mmol) 3-fluoro-4-methoxycarbonylphenyl boronic acid, 502 g (0.71 mmol) bis-(triphenylphoshine)palladium(II) chloride, 10.7 mL (21.5 mmol) of an aqueous 2 M Cs₂CO₃ and 10 mL EtOH in 100 mL DME. The reaction mixture is stirred over night at 80° C. The reaction mixture is filtered over celite and the solvent is removed under reduced pressure. The crude product is triturated with water and ethylacetate. The phases are separated and the aqueous is extracted twice with ethylacetate. The combined organic layers are dried over Mg2SO₄ and the solvent is evaporated under reduced pressure. The crude is stirred with cyclohexane 35 and filtered off. After drying 4.0 g (72%) of the desired product is obtained as solid material, which is used without further purification in the next step.

A-51) 4-[5-(6-Amino-2-methyl-pyridin-3-ylethynyl)-6-ethyl-pyrimidin-4-yl]-2-fluoro-benzoic acid

The title compound is synthesized according to general procedure GP8 starting from 4.0 g (10.3 mmol) 4-[5-(6-Amino-2-methyl-pyridin-3-ylethynyl)-6-ethyl-pyrimidin-4-yl]-2-fluoro-benzoic acid methyl ester using 1.29 g (30.7 mmol.) LiOH in 40 mL water and 200 mL THF. The reaction mixture is stirred over night at 50° C. The solvent is removed under reduced pressure and the residie is taken up in water. Aqueous 1 M HCl is added until pH 5 is reached. The precipitated product is filtered off and washed with ACN. After drying 1.3 g (32%) of the desired product are obtained a solid material.

10

15

40

45

50

55

The title compound is synthesized in analogy to general procedure GP4 starting from 1.2 g (4.63 mmol) 4-chloro-6-ethyl-5-(6-amino-pyridin-3-ylethynyl)-pyrimidine using 1.0 g (5.6 mmol) 4-methoxycarbonyl-3-pyridyl boronic acid, 163 mg (0.23 mmol) bis-(triphenylphoshine)palladium(II) chloride, 7.0 mL (13.9 mmol) of an aqueous 2 M Cs₂CO₃ and 2 mL MeOH in 10 mL DME. The reaction mixture is stirred over night at 80° C. The reaction mixture is poured on water and washed with DCM. Aqueous 1 M HCl is added to the aqueous phase until pH 5 is reached. The precipitated product is filtered off and washed with water and methanol. After drying 290 mg (13%) of the desired product are obtained a solid material which is used for the next step without further purification.

A-72) 4-[5-(6-Amino-pyridin-3-ylethynyl)-6-ethyl-pyrimidin-4-yl]-2-fluoro-benzoic acid methyl ester

The title compound is synthesized in analogy to general procedure GP4 starting from 15 g (58.06 mmol) 4-chloro-6-ethyl-5-(6-amino-pyridin-3-ylethynyl)-pyrimidine using 60 13.8 g (69.6 mmol) 3-fluoro-4-methoxycarbonylphenyl boronic acid, 1.51 g (2.15 mmol) bis-(triphenylphoshine) palladium(II) chloride, 43.5 mL (87.0 mmol) of an aqueous 2 M Cs₂CO₃ and 20 mL EtOH in 200 mL DME. The reaction mixture is stirred over night at 80° C. The reaction mixture is 65 filtered over celite and the solvent is removed under reduced pressure. The crude product is triturated with water and soni-

38

cated for 30 min. The precipitated product is filtered off, washed with ACN and a small amount of MeOH. After drying 14.8 g (6.8%) of the desired product is obtained as solid material.

A-73) 4-[5-(6-Amino-pyridin-3-ylethynyl)-6-ethylpyrimidin-4-yl]-2-fluoro-benzoic acid

The title compound is synthesized according to general procedure GP8 starting from 17.8 g (47.3 mmol) 4-[5-(6-amino-pyridin-3-ylethynyl)-6-ethyl-pyrimidin-4-yl]-2-fluoro-benzoic acid methyl ester using 3.97 g (94.6 mmol.) LiOH in 30 mL water and 300 mL THF. The reaction mixture is stirred over night at RT. The solvent is removed under reduced pressure and the residie is taken up in water. Aqueous 1 M HCl is added until pH 5 is reached. The precipitated product is filtered off and washed with ACN. After drying 17.1 g (85%) of the desired product are obtained a solid material.

A-74) 4-[5-(6-Amino-pyridin-3-ylethynyl)-6-ethylpyrimidin-4-yl]-benzoic acid methyl ester

The title compound is synthesized according to general procedure GP4 starting from 2.0 g (7.73 mmol) 4-chloro-6-ethyl-5-(6-amino-pyridin-3-ylethynyl)-pyrimidine using 2.1 g (11.6 mmol) 4-methoxycarbonylphenyl boronic acid, 271.3 mg (0.39 mmol) bis-(triphenylphoshine)palladium(II) chloride, 5.7 mL (11.5 mmol) of an aqueous 2 M $\rm Cs_2\rm CO_3$ solution and 2 mL EtOH in 5 mL DME. The reaction mixture is stirred for 1 h at 130° C. in the microwave. The reaction mixture is suspended in MeOH and the precipitated product is filtered off and washed with MeOH. After drying 2.25 g (81%) of the desired product are obtained as solid material.

10

15

The title compound is synthesized according to general procedure GP8 starting from 2.25 g (6.28 mmol) 4-[5-(6-amino-pyridin-3-ylethynyl)-6-ethyl-pyrimidin-4-yl]-benzoic acid methyl ester using 1.32 g (31.4 mmol.) LiOH in 5 mL water and 50 mL THF. The reaction mixture is stirred over night at 50° C. The solvent is removed under reduced pressure and the residue is taken up in water. Aqueous 1 M HCl is added until pH 5 is reached. The precipitated product is filtered off and taken up in water. After freeze drying 2.3 g of crude product are obtained which is used for the next step without further purification.

A-76) 4-[5-(6-Amino-pyridin-3-ylethynyl)-6-ethyl-pyrimidin-4-yl]-2-chloro-benzoic acid methyl ester

The title compound is synthesized according to general procedure GP4 starting from 4.0 g (15.5 mmol) 4-chloro-6-55 ethyl-5-(6-amino-pyridin-3-ylethynyl)-pyrimidine using 4.3 g (20.1 mmol) 3-chloro-4-methoxycarbonylphenyl boronic acid, 543 mg (0.77 mmol) bis-(triphenylphoshine)palladium (II) chloride, 11.6 mL (23.2 mmol) of an aqueous 2 M $\rm Cs_2CO_3$ and 10 mL EtOH in 100 mL DME. The reaction 60 mixture is stirred over night at 80° C. The solvent is removed under reduced pressure and the residue is taken up in water and ethylacetate. The aqueous phase is extracted twice with ethylacetate. The combined organic layers are dried over MgSO₄ filtered over celite and the solvent is removed under reduced pressure. After drying 3.3 g (54%) of the desired product is obtained.

The title compound is synthesized according to general procedure GP8 starting from 3.3 g (8.4 mmol) 4-[5-(6-amino-pyridin-3-ylethynyl)-6-ethyl-pyrimidin-4-yl]-2-chloro-benzoic acid methyl ester using 1.06 g (25.2 mmol.) LiOH in 20 mL water and 100 mL THF. The reaction mixture is stirred over night at 50° C. The solvent is removed under reduced pressure and the residue is taken up in water. Aqueous 1 M HCl is added until pH 5-6 is reached. The precipitated product is filtered off and washed with water and MeOH. After drying 2.5 g (89%) of the desired product are obtained as solid material.

A-78) 4-[5-(6-Amino-pyridin-3-ylethynyl)-6-methylpyrimidin-4-yl]-benzoic acid methyl ester

The title compound is synthesized according to general procedure GP4 starting from 2.0 g (8.2 mmol) 4-chloro-6-methyl-5-(6-amino-pyridin-3-ylethynyl)-pyrimidine using 2.2 g (12.3 mmol) 4-methoxycarbonylphenyl boronic acid, 240 mg (1.5 mmol) 287 mg (0.41 mmol) bis-(triphenylphoshine)palladium(II) chloride, 6.1 mL (12.3 mmol) of an aqueous 2 M Cs $_2$ CO $_3$ and 2 mL EtOH in 5 mL DME. The reaction mixture is stirred for 1 h at 130° C. in the microwave. The reaction mixture is suspended in MeOH and the precipitated to product is filtered off and washed with MeOH. After drying 2.2 g (77%) of the desired product are obtained as solid material.

10

15

35

The title compound is synthesized according to general procedure GP8 starting from 2.2 g (6.3 mmol) 4-[5-(6-aminopyridin-3-ylethynyl)-6-methyl-pyrimidin-4-yl]-benzoic acid methyl ester using 1.33 g (31.6 mmol.) LiOH in 5 mL water and 50 mL THF. The reaction mixture is stirred over night at 25 50° C. The solvent is removed under reduced pressure and the residue is taken up in water. Aqueous 1 M HCl is added until pH 5 is reached. The precipitated product is filtered off and taken up in water. After freeze drying 2.7 g of crude product are obtained which is used for the next step without further purification. 30

A-80) 4-[5-(6-Amino-pyridin-3-ylethynyl)-6-methyl-pyrimidin-4-yl]-2-chloro benzoic acid methyl ester

$$NH_2$$
 NH_2
 NH_2

The title compound is synthesized according to general procedure GP4 starting from 10 g (40.9 mmol) 4-chloro-6-methyl-5-(6-amino-pyridin-3-ylethynyl)-pyrimidine using 10.5 g (49.0 mmol) 2-chloro-4-methoxycarbonylphenyl boronic acid, 1.43 g (2.04 mmol) bis-(triphenylphosphine) palladium(II) chloride, 61.3 mL (122 mmol) of an aqueous 2 M Cs $_2$ CO $_3$ solution and 50 mL EtOH in 500 mL DME. The reaction mixture is stirred for 3 h at 80° C. The reaction mixture is filtered over celite and the solvent is removed under reduced to pressure. Water is added and the precipitated product is filtered off and washed with ACN and MeOH. After drying 13.8 g of crude product are obtained which is used in the next step without further purification.

The title compound is synthesized according to general procedure GP8 starting from 13.8 g (36.4 mmol) 4-[5-(6-amino-pyridin-3-ylethynyl)-6-methyl-pyrimidin-4-yl]-2-chloro-benzoic acid methyl ester using 7.64 g (182 mmol.) LiOH in 200 mL water and 400 mL THF. The reaction mixture is stirred over night at 50° C. The solvent is removed under reduced pressure and the residue is taken up in water. Aqueous 1 M HCl is added until pH 5-6 is reached. The precipitated product is filtered off and washed with water and MeOH. After drying 12.1 g of the desired product is obtained, which is used for the next step without further purification.

A-82) 4-[5-(6-amino-pyridin-3-ylethynyl)-6-methyl-pyrimidin-4-yl]-2-fluoro benzoic acid methyl ester (C-45)

The title compound is synthesized according to general procedure GP4 starting from 2.0 g (8.2 mmol) 4-chloro-6-methyl-5-(6-amino-pyridin-3-ylethynyl)-pyrimidine using 2.9 g (14.7 mmol) 2-fluoro-4-methoxycarbonylphenyl boronic acid, 287 mg (0.41 mmol) bis-(triphenylphoshine) palladium(II) chloride, 6.1 mL (12.3 mmol) of an aqueous 2 M Cs $_2$ CO $_3$ solution and 2 mL EtOH in 5 mL DME. The reaction mixture is stirred for 1 h at 130° C. in the microwave. The reaction mixture is suspended in MeOH and the precipitated product is filtered off and washed with MeOH. After drying, 2.3 g (77%) of the desired product is obtained as solid material.

44
A-85) 5-[5-(6-Amino-pyridin-3-ylethynyl)-6-ethyl-pyrimidin-4-yl]-2-fluoro-benzoic acid

The title compound is synthesized according to general procedure GP8 starting from 2.28 g (6.29 mmol) 4-[5-(6-amino-pyridin-3-ylethynyl)-6-methyl-pyrimidin-4-yl]-2-fluoro benzoic acid methyl ester using 1.32 g (31.5 mmol.) LiOH in 5 mL water and 50 mL THF. The reaction mixture is stirred over night at 50° C. The solvent is removed under reduced pressure and the residue is taken up in water. Aqueous 1 M HCl is added until pH 5 is reached. The precipitated product is filtered off and taken up in water. After freeze drying 2.7 g of crude product is obtained which is used for the next step without further purification.

A-84) 5-[5-(6-Amino-pyridin-3-ylethynyl)-6-ethyl-pyrimidin-4-yl]-2-fluoro-benzoic acid methyl ester

$$NH_2$$
 NH_2
 NH_2

The title compound is synthesized according to general 55 procedure GP4 starting from 1.5 g (5.8 mmol) 4-chloro-6-ethyl-5-(6-amino-pyridin-3-ylethynyl)-pyrimidine using 1.7 g (8.7 mmol) (4-fluoro-3-methoxycarbonyl)phenyl boronic acid, 203 mg (0.29 mmol) bis-(triphenylphoshine)palladium (II) chloride, 1.94 g (13.9 mmol) $\rm K_2CO_3$ in 18 mL DME/H₂O/ $\rm EtOH~(10:5:1~v/v/v)$. The reaction mixture is stirred for 3 h at 80° C. The mixture is filtered over celite and the solvent is removed under reduced pressure. Water is added and the precipitated product is filtered off and washed with ACN and $\rm MeOH$. After drying 1.5 g (68%) of crude product is obtained which is used for the next step without further purification.

The title compound is synthesized according to general procedure GP8 starting from 1.5 g (3.98 mmol) 5-[5-(6-amino-pyridin-3-ylethynyl)-6-ethyl-pyrimidin-4-yl]-2-fluoro-benzoic acid methyl ester using 334 mg (7.97 mmol) LiOH in 20 mL THF and 5 mL water. The reaction mixture is stirred over night at 50° C. Aqueous 1 M HCl is added until pH 5 is reached. The solvent is removed under reduced pressure and the residue is stirred in MeOH. After drying the crude product (0.8 g) is used in the next step without further purification.

A-86) 4-[5-(6-Amino-2-methyl-pyridin-3-ylethynyl)-6-ethyl-pyrimidin-4-yl]-2-fluoro-benzoic acid methyl ester

The title compound is synthesized according to general procedure GP4 starting from 3.90 g (14.3 mmol) 4-chloro-6-ethyl-5-(6-amino-2-methyl-pyridin-3-ylethynyl)-pyrimidine using 3.38 g (18.6 mmol) 3-fluoro-4-methoxycarbonylphenyl boronic acid, 502 mg (0.71 mmol) bis-(triphenylphoshine) palladium(II) chloride, 10.7 mL (21.5 mmol) of an aqueous 2 M $\rm Cs_2CO_3$ solution and 10 mL EtOH in 100 mL DME. The reaction mixture is stirred over night at 80° C. The solvent is

20

25

40

45

50

removed under reduced pressure and the residue is taken up in water and ethylacetate. The aqueous phase is extracted twice with ethylacetate. The combined organic layers are dried over $\rm MgSO_4$ filtered over celite and the solvent is removed under reduced pressure. After drying 4.0 g (72%) of the desired product is obtained.

A-87) 4-[5-(6-Amino-2-methyl-pyridin-3-ylethynyl)-6-ethyl-pyrimidin-4-yl]-2-fluoro-benzoic acid

The title compound is synthesized according to general procedure GP8 starting from 4.0 g (10.2 mmol) 4-[5-(6-amino-2-methyl-pyridin-3-ylethynyl)-6-ethyl-pyrimidin-4-yl]-2-fluoro-benzoic acid methyl ester using 1.29 g (30.7 mmol.) LiOH in 40 mL water and 200 mL THF. The reaction mixture is stirred over night at 50° C. The THF is removed under reduced pressure and the residue is taken up in water. Aqueous 1 M HCl is added until pH 5-6 is reached. The precipitated product is filtered off and washed with water and MeOH. After drying 1.25 g (32%) of the desired product is obtained a solid material.

A-92) 4-[5-(6-Amino-pyridin-3-ylethynyl)-6-ethyl-pyrimidin-4-yl]-2-methoxy-benzoic acid methyl

The title compound is synthesized according to general procedure GP4 starting from 2.5 g (9.7 mmol) 4-chloro-6-

ethyl-5-(6-amino-pyridin-3-ylethynyl)-pyrimidine using 2.4 g (11.6 mmol) 3-methoxy-4-methoxycarbonylphenyl boronic acid, 339 mg (0.48 mmol) bis-(triphenylphoshine) palladium(II) chloride, 14 mL (28.2 mmol) of an aqueous 2 M 5 Cs₂CO₃ and 5 mL MeOH in 50 mL DME. The reaction mixture is stirred for 2 hours at 90° C. The solvent is removed under reduced pressure and the residue is taken up in water and ethylacetate. The aqueous phase is extracted twice with ethylacetate. The combined organic layers are dried over 10 MgSO₄ filtered over celite and the solvent is removed under reduced pressure. After drying 3.3 g (89%) of the desired product is obtained.

A-93) 4-[5-(6-Amino-pyridin-3-ylethynyl)-6-ethylpyrimidin-4-yl]-2-methoxy-benzoic acid

The title compound is synthesized according to general procedure GP8 starting from 7.5 g (19.3 mmol) 4-[5-(6-amino-pyridin-3-ylethynyl)-6-ethyl-pyrimidin-4-yl]-2-

methoxy-benzoic acid methyl ester using 4.05 g (96.5 mmol.)
 LiOH in 100 mL water and 200 mL THF. The reaction mixture is stirred over night at room temperature. The solvent is removed under reduced pressure and the residue is taken up in water. Aqueous 1 M HCl is added until pH 5-6 is reached. The precipitated product is filtered off and washed with water and Acetonitrile. After drying 6.5 g (89%) of the desired product is obtained as solid material.

Intermediates A-94 to A-96G can be synthesized according to the general procedure GP4 (Suzuki reaction) outlined above. The appropriate halides required for synthesis can be deduced from the table of examples.

TABLE 1A

	TABLI	E 1A		
	Examples A-	94-A-96G		
Nr.	Structure	Int. 1 Int. 2	MW	MW [M + H]
A-94	CH ₃ NH ₂ NH ₂ NH ₂ NH ₂ CH ₃ NCH ₃	A-43 A-47	394.38	395
A-95	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{CI} \\ \text{CH}_3 \end{array}$	A-43 A-48	410.84	412
A-96	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{Cl} \\ \text{Cl} \\ \text{CH}_3 \end{array}$	A-43 3,5-dichloro-4- methoxycarbonyl- phenyl boronic acid	427.29	428
A-96A	$\bigcap_{K} \bigcap_{K} \bigcap_{K$	A-45 A-49A	390.42	392

TABLE 1A-continued

	Examples A-94	- A-96G		
	Ехапріев А-94	- 21 70U		
Nr.	Structure	Int. 1 Int. 2	MW	MW [M + H]
A-96B	CH ₃ N F CH ₃ CH ₃	A-45 A-47	408.40	410
A-96C	CH ₃ CH ₃ N CI CI CH ₃	A-45 A-49A	441.32	443
A-96D	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{O} \\ \text{CH}_3 \end{array}$	A-43 3-methyl-4- methoxycarbonyl- phenyl boronic acid	372.43	374
A-96 E	CH ₃ NH ₂ NH ₂ NH ₂ NH ₂ CH ₃ CH ₃	A-43 A-49B	426.40	428

TABLE 1A-continued

		Examples A-9	4-A-96G	
Nr.	Structure		Int. 1 Int. 2	MW MW [M+H]
A-96F	CH ₃	NH ₂ NH ₂ NH ₂ O F F F CH ₃	A-43 A-49C	442.40

40

Intermediates A-100 to A-109 can be synthesized according to the general procedure GP8 outlined above. The appropriate methylesters required for synthesis can be deduced from the table of examples.

TABLE 1B

	Examples A-10	00-A-109		
Nr.	Structure	Intermediate 1	MW	MW [M + H]
A-100	NH NH NH NH OH	H ₂ A-94	380.36	382

TABLE 1B-continued

	TABLE 1B-conti	nued		
	Examples A-100-A-	109		
Nr.	Structure	Intermediate 1	MW	MW [M + H
A-101	NH ₂ NH ₂ NO NH ₂ NO	A-95	396.81	398
A-102	NH ₂ NH ₂ NH ₂ O Cl OH	A-96	413.27	415
A-103	$\bigcap_{N}^{CH_3} \bigcap_{N}^{H_N}$	A-96A	376.39	378
A-104	$\bigcap_{N} \bigcap_{H} \bigcap_{N} \bigcap_{H} \bigcap_{N} \bigcap_{H} \bigcap_{H$	A-96B	394.38	396

TABLE 1B-continued

	TABLE 1B-conti	nuea		
	Examples A-100-A-	109		
Nr.	Structure	Intermediate 1	MW	MW [M + H]
A-105	NH CH ₃ NH Cl OH	A-96C	427.29	429
A-106	CH ₃ NH ₂ NO OH	A-96D	358.40	360
A-107	CH ₃ NH ₂	A-96E	412.37	414
A-108	CH ₃ NH ₂ NH ₂ NH ₂ O F F F O OH	A-96F	428.37	430

TABLE 1B-continued

	Examples A-100-A-10	9		
Nr.	Structure	Intermediate 1	MW	MW [M + H]
A-109	$\bigcap_{N} \bigcap_{N} \bigcap_{N$	A-96G	390.42	392

Examples C

Examples C-1 to C-50 can be synthesized according to the general procedures GP4 (Suzuki reaction) outlined above. The appropriate halides required for synthesis can be deduced from the table of examples.

TABLE 2

	Examples C-1-C-53						
Nr.	Structure		Int.	MW	MW [M + H]	t_R [min]	EC ₅₀ PC3 [nM]
C-1	H ₃ C N	NH ₂ NH ₂ N N N N H ₃ C CH ₃	A-43	367.45	368	1.78	49

C-2
$$NH_2$$
 A-41 353.43 354 1.65 85 NH_3 C CH_3

TABLE 2-continued

	TABLE 2-coi	itinued				
	Examples C-1	-C-53				
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
C-3	CH ₃ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄	A-43	329.41	330	1.57	78
C-4	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{CH}_3 \\ \text{CH}_3 \end{array}$	A-43	329.41	330	1.54	60
C-5	N N N N N N N N N N	A-41	377.83	378	1.32	50
C-6	NH_2 NH_2 NH_2 NH_3 NH_2 NH_3 NH_3	A-41	357.42	358	1.34	77

TABLE 2-continued

	TABLE 2-c	ontinued				
	Examples C	C-1-C-53				
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
C-7	CH ₃ NH ₂	A-41	286.34	287	1.47	163
C-8	CH ₃ NH ₂ NH ₂ NCH ₃ NCH ₃	A-41	364.43	365	1.3	173
C-9	$\begin{array}{c} CH_3 \\ N\\ N\\ CH_3 \end{array}$	A-41	375.41	376	1.39	275
C-10	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{N} \\ \text{CH}_3 \\ \text{CH}_3 \end{array}$	A-41	357.42	358	1.35	134

		2-continued				
Nr.	Structure	oles C-1-C-53	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
C-11	CH ₃ N F O H ₃ C CH ₃	NH ₂ A-41	375.41	376	1.38	67
C-12	H_3C N	NH ₂ A-43	391.86	392	1.45	46
C-13	H ₃ C N	NH ₂ A-43	300.36	301	1.63	170
C-14	H ₃ C N	NH ₂ A-43	378.45	379	1.47	100

TABLE 2-continued

		Examples C-1-C-53 MW EC ₅₀ PC3 Int. MW [M+H] t _R [min] [nM] NH ₂ A-43 389.43 390 1.53 142 NH ₂ A-43 389.43 390 1.55 74										
Examples C-1-C-53												
Nr.	Structure	Int.	MW		t _R [min]	PC3						
C-15	H_3C N	A-43	389.43	390	1.53	142						
C-15A	H_3C N	A-43	389.43	390	1.55	74						
C-16	CH ₃ CH ₃ N CH ₃ CH ₃	A-42	390.87	391/393	1.64	627						
C-17	CH ₃ CH ₃ CH ₃	A-42	377.47	378	1.63	603						

TABLE 2-continued

Examples C-1-C-53										
Nr.	Structure	Int.	MW	MW [M + H]	t_R [min]	EC ₅₀ PC3 [nM]				
C-18	CH_3 N	A-42	370.45	371	1.64	612				
C-19	CH_3 N	A-42	388.44	289	1.71	506				
C-20	CH_3 CH_3 CH_3 CH_3	A-41	301.35	302	1.33	191				
C-21	CH ₃ NH ₂	A-41	355.32	356 (564)	1.60 (1.70)	265				

TABLE 2-continued

	Examples C-1	-C-53				
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
C-22	CH ₃ NH ₂	A-41	337.38	338	1.50	163
C-23	CH ₃ N N CH ₃ N CH ₃ N CH ₃ N CH ₃	A-41	317.35	318	1.45	245
C- 24	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{CH}_3 \end{array}$	A-41	301.35	302	1.34	153
C-25	CH ₃ NH ₂	A-41	370.46	371	1.62	407

TABLE 2-continued

	Examples C-1	-C-53				
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3
C-26	CH ₃	A-41	327.39	328	1.53	170
C-27	CH ₃ NH ₂ NH ₂ NH ₂ NH ₃	A-43	315.38	316	1.47	138
C-28	NH2 NH2 N F F	A-43	369.35	370	1.74	139
C-29	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-43	351.41	352	1.63	123

	72	Ĺ	13 9,3	21,//1	DΖ	
	73 TABLE 2-con	itinued				
	Examples C-1-	-C-53				
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
C-30	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{O} \\ \text{CH}_3 \end{array}$	A-43	331.38	332	1.59	178
C-31	CH ₃ NH ₂ NH ₂ NH ₂ NH ₃	A-43	315.38	316	1.46	133
C-32	CH ₃ N N N N N N N N N N N N N N N N N N N	A-43	386.46	387	1.56	95

TABLE 2-continued

	Examples C-1	-C-53				
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
C-34	CH ₃ N CH ₃ CH ₃	A-43	344.42	345	1.58	78
C-35	NH ₂ NH ₂ NH ₂	A-43	341.42	342	1.65	131
C-36	$_{\rm N}^{\rm CH_3}$ $_{\rm N}^{\rm NH_2}$ $_{\rm N}^{\rm NH_2}$ $_{\rm N}^{\rm CH_3}$ $_{\rm H_3C}$	A-41	385.47	386	1.53	590
C-37	CH ₃ N N N N N N N N N N N N N N N N N N N	A-41	399.45	400	1.34	644

TABLE 2-continued

	Examples C-1-C-53										
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]					
C-38	CH_3 NH_2 NH_3 C N C	A-41	391.86	392	1.53	245					

	TABLE 2 COMMING										
	Examples C-1	C-53				EC ₅₀					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	PC3 [nM]					
C-41	CH ₃ N N N F	A-41	415.47	416	1.46	679					

TABLE 2-continued

	TABLE 2-con	tinued				
	Examples C-1-	C-53				
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
C-44	CH ₃ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃	A-43	399.50	400	1.64	543
C-45	H ₃ C NH ₂ NH ₂ NH ₂ NH ₃ CH ₃ CH ₃	A-43	405.89	406	1.47	90
C-46	NH ₂ NH ₂ NH ₂ NH ₂	A-43	431.47	432	1.51	228
C-47	NH ₂ CH ₃ N NH ₂ N NH ₃ C N O	A-43	433.94	434	1.66	517

	Examples C-1-C-53										
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]					
C-48	CH ₃ NH ₂ N N CI	A-43	445.95	446	1.69	747					

Examples D

Examples D-1 to D-240 can be synthesized according to the general procedures GP9 (amide formation) outlined above. The appropriate intermediates required for synthesis can be deduced from the table of examples.

TABLE 3

	IABLE 3					
	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-1	N N N N N N N N N N	A-73	447.51	448	1.66	77
D-2	N N N N N N N N N N	A-73	446.53	447	1.62	148
D-3	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{CH}_3 \\ \text{CH}_3 \\ \end{array}$	A-73	472.57	473	1.63	217

	Examples D-1-D2	240				
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-4	CH ₃ NH ₂ NH ₂ NCH ₃ OH	A-73	433.48	434	1.49	33

	89 TABLE 3-continued	,,,,				90
	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-7	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{N} \\ \text{CH}_3 \end{array}$	A-73	433.48	434	1.63	24
D-8	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-73	444.51	445	1.57	49

	91						92
		TABLE 3-continued					
		Examples D-1-D240					
Nr.	Structure		Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-10	CH ₃ CH ₃ F	NH ₂	A-87	443.52	444	1.78	42
D-11		\sim NH $_2$	A -77	445.95	446	1.80	51

TABLE 3-continued

	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-13	CH ₃ NH ₂ NH ₂ NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-87	484.58	485	1.77	53
D-14	NH2 NH2 NH2 N CH3 F F F F	A-87	511.52	512	1.91	72
D-15	CH ₃ NH ₂ NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-87	528.63	529	1.61	51

TABLE 3-continued

	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-16	CH ₃ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₂ NH ₃ NH ₄ NH ₂ NH ₄ NH ₅ NH ₅ NH ₆ NH ₇	A-87	528.63	529	1.72	67
D-17	CH ₃ NH ₂ NH ₂ NH ₂ N N N N O S O	A-87	562.67	563	1.53	76
D-18	CH ₃ NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-87	498.60	499	1.75	41

	Examples D-1-D240								
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]			
D-19	CH_3 CH_3 N CH_3 N O CH_3 N O CH_3	A-87	536.63	537	1.64	30			
D-20	CH ₃ NH ₂	A-87	445.50	446	1.57	14			
D-21	N CH_3 N CH_3 F N CH_3 N CH_3	A-87	458.54	459	1.57	27			

A-87 529.62

530

1.55 41

	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-22	CH ₃ NH ₂ NH ₂ NH ₂ NH ₃ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₇	A-87	540.68	541	2.23	355

D-23
$$\begin{array}{c} CH_3 \\ N \\ CH_3 \\ N \\ CH_3 \\ \end{array}$$

521

1.96 55

	Example	es D-1-D240				
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3
O-24	CH ₃ NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-87	534.64	535	1.96	52

		II IBEE 3 Commaca					
		Examples D-1-D240					
Nr.	Structure		Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-26	CH ₃ CH ₃ CH ₃ R ₃ C	NH ₂ NH ₃ O CH ₃	A-87	515.63	516	1.63	140

D-27
$$\begin{array}{c} CH_3 \\ N \\ N \end{array}$$

A-77 518.06 518 1.63 96

TABLE 3-continued

	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-28	CH ₃ NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-77	487.00	487/489	1.78	9
D-29	CH ₃ NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-77	503.05	503	1.93	56
D-30	CH ₃ NH ₂ NH ₂ O CH ₃ CH ₃	A-77	463.97	464/466	1.68	71

	TABLE 3-continued					
Nr.	Examples D-1-D240 Structure	Int.	MW	MW [M + H]	t _R	EC ₅₀ PC3 [nM]
D-31	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-77	531.06	531/533	1.62	23
D-32	NH ₂ CH ₃ NNH ₂ O S O	A-77	565.10	565	1.53	38
D-33	NH2 NH2 NH2 NH2 OCH3	A-77	435.91	436/438	1.53	45

	Examples D-1-D24	0				
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-34	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{N} \\ \text{O} \\ \text{OH} \end{array}$	A-77	435.91	436	1.45	36

	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-37	CH ₃ NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-77	524.03	524	1.82	38

A-77 515.06 515 1.90 65

TABLE 3-continued

	Examples D-1-D240					
	Examples D-1-02-40			MW	t _p	EC ₅₀ PC3
Nr.	Structure	Int.	MW	[M + H]	t _R [min]	[nM]
D-39	NH ₂ NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-77	523.04	523	1.97	67
D-40	$\begin{array}{c} N \\ N $	A-77	513.95	514	1.93	130
D-41	CH ₃ NH ₂ NN N N F F	A-77	510.97	511	1.75	28

	Examples D-1-D240									
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]				
D-42	NH2 NH2 NH2 NH2 NH2 NH2 NH2	A-77	489.02	487	1.78	16				
D-43	H_3C CH_3 NH_2 NH_3C CH_3 H_3C CH_3	A-77	503.05	503	1.86	28				
D-44	NH2 NH2 NH2 NH2 NH2	A-77	460.92	461	1.43	56				

TABLE 3-continued

	TABLE 3-continued Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-45	CH ₃ NH ₂ NH ₂ NH ₂ NH ₂ CH ₃ NH ₂	A-77	474.99	475	1.68	54
D-46	CH ₃ NH ₂ NH ₂ NH ₃ C O	A-77	488.98	489	1.51	74
D-47	CH ₃ NH ₂ NH ₃ C N N N N N N N N N N N N N N N N N N N	A-93	506.55	507	1.64	58

TABLE 3-continued

	TABLE 3-continued								
Nr.	Examples D-1-D240 Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]			
D-48	$\begin{array}{c} \text{CH}_{3} \\ \text{N} \\ \text{N}$	A-93	498.63	499	1.76	58			
D-49	N N N N N N N N N N	A-93	482.59	483	1.66	43			
D-50	N N N N N N N N N N	A-93	484.60	485	1.65	80			

TABLE 3-continued

	TABLE 3-continued					
Nr.	Examples D-1-D240 Structure	Int.	MW	MW [M + H]	t _R	EC ₅₀ PC3
D-51	NH2 N N	A-93	526.64	527	1.52	30
D-52	H_3C N	A-93	500.60	501	1.53	71
	H ₃ C O N					
D-53	N N N N N N N N N N	A-93	470.57	471	1.57	67

TABLE 3-continued

	TABLE 3-continued					
	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-54	N N N N N N N N N N	A-93	524.54	525	1.77	38
D-55	F F NH2	A-93	534.64	535	1.57	36
D-56	O N N N N N N N N N N N N N N N N N N N	A-93	484.56	485	1.42	115
	$H_{3}C$ N					

TABLE 3-continued

	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-57	$_{\rm N}^{\rm NH_2}$	A-93	486.57	487	1.39	357
D-58	N N N N N N N N N N	A-93	456.55	457	1.47	49
D-59	N N N N N N N N N N	A-93	456.50	457	1.34	248

	Examples D-1-D	240				
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-60	N N N N N N N N N N	A-93	513.64	514	1.56	480

TABLE 3-continued

	Examples	D-1-D240				
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-62	CH ₃ NH ₂ N N N N CH ₃ N N CH ₃ N N N N N N N N N N N N N N N N N N N	A-73	527.64	528	1.57	56

TABLE 3-continued

	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-64	NH2 NH2 N N N N N N N N N N N CH3	A-73	527.64	528	1.68	71
D-65	NH2 NH2 NH2 NH2 NH2 NH2 NH2 NH2	A-73	458.54	459	1.59	156
D-66	NH2 NH2 NH2 NH2 NH2 NH2 NH2 NH2	A-73	459.52	460	1.54	46

	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-67	CH ₃ NH ₂ NH ₂ N N N N N N N N CH ₃	A-73	610.78	611	1.67	105
D-68	CH ₃ NH ₂ NH ₂ N N N F O HO CH ₃	A-73	391.40	392	1.11	24
D-69	CH ₃ N N N F F F F	A-73	512.51	513 (775)	1.84 (1.89)	51

TABLE 3-continued

	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-70	CH ₃ NH ₂ N N N N N N N N N N N N N N N N N N N	A-73	512.63	513	1.88	80
D-71	NH2 NH2 NH2 OH	A-73	445.50	446	1.45	32
D-73	N N N N N N N N N N	A-73	486.59	487	1.74	179

TABLE 3-continued

	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-74	NH2 NH2 NH2 NH3C NH3C	A-73	472.57	473	1.69	128
D-75	CH ₃ NH ₂ NH ₂ NH ₃	A-73	458.54	459	1.68	147
D-76	N N N N N N N N N N	A-73	486.59	487	1.74	93
D-77	NH2 NH2 NH2 NH2 NH2 CH3 CH3	A-73	472.57	473	1.70	80

TABLE 3-continued

	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-78	CH ₃ NH ₂ N N N N N N N N N N N N N N N N N N N	A-73	541.67	542	1.63	53
D-79	N N N N N N N N N N	A-73	487.58	488	1.64	33
D-80	$\begin{array}{c} \text{CH}_{3} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{OH} $	A-73	487.58	488	1.70	53

TABLE 3-continued

	TABLE 3-continued					
Nr.	Examples D-1-D240 Structure	Int.	MW	MW [M + H]	t _R	EC ₅₀ PC3 [nM]
D-81	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{OOH} \\ \text{CH}_3 \\ \text{CH}_3 \end{array}$	A-73	447.51	448	1.55	72
D-82	NH_2 CH_3 F N NH_2 NH_2 NH_3 NH_2 NH_3 NH_3 NH_3 NH_2 NH_3 NH_3 NH_3 NH_3	A-41	486.55	487	1.52	50
D-83	CH ₃ N N N N N N N N N N N N N N N N N N N	A-73	486.59	487	1.90	36

 \sim_{CH_3}

		17 IBEE 5 Commucu					
		Examples D-1-D240					
Nr.	Structure		Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-84	CH ₃ N N N N O	NH ₂	A-73	514.60	515	1.60	17

D-85
$$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{N} \\ \text{CH}_3 \\ \text{CH}_4 \\ \text{CH}_5 \\$$

A-73 515.59 516 1.54 56

TABLE 3-continued

	TABLE 3-continued					
	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-86	NH2 NH2 N N N N N N N N N N N N N N N N	A-73	548.64	549	1.51	39
D-87	O NH ₂ NH ₂ N N N N N N N N N N N N N	A-73	484.58	485	1.73	54
D-88	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-73	514.60	515	1.70	68

TABLE 3-continued

	TABLE 3-continued Examples D-1-D240								
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]			
D-89	CH ₃ N N N N O S O S O O S O O O O O O O O O	A-73	522.60	523	1.62	42			
D-90	CH ₃ NH ₂ NN N N N N N N N N N N N N N N N N N	A-73	472.52	473	1.47	48			
D-91	H ₃ C NH ₂ NH ₂ NH ₂ OH	A-73	474.54	475	1.45	44			

	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-92	NH2 NH2 N N N N N N N N N N N N N N N N	A-73	507.57	508	1.8	76

TABLE 3-continued

	TABLE 3-continued					
	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-94	CH ₃ NH ₂	A-73	526.66	527	2.22	602
	F O N N N N N N N N N N N N N N N N N N					
D-95	NH2 NH2 NH2 N N N N N N N N N N N N N N	A-73	488.56	489	1.6	40
Doc	H ₃ C O NI	4 72	400.00	400	1.07	63
D-96	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-73	498.60	499	1.87	63

	TABLE 3-COILIN	ueu				
	Examples D-1-D24	40				
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-97	NH2 NH2 N N N N N N N N N N N N N N N N	A-73	520.61	521	1.95	151

A-73 506.58 507 1.95 78

TABLE 3-continued

	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-99	NH2 NH2 NH2 NH2 NH3C NCH3	A-73	501.61	502	1.62	78
D-100	N N N N N N N N N N	A-73	472.57	473	1.63	44
D-101	NH2 NH2 N N N N N N N N N N N N N N N N	A-73	445.50	446	1.56	12

	TABLE 3-continued Examples D-1-D240					
Nr.	Structure Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-103	CH ₃ NH ₂	A-73	502.59	503	1.62	58
	HO CH ₃					
D-104	NH2 NH2 NH2	A-73	473.55	474	1.57	62
D-105	OH NH ₂	A-73	463.53	462	1.39	50
	F O N O O O O O O O O O O O O O O O O O					

TABLE 3-continued

	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-106	CH ₃ NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-73	484.58	485	1.77	42
D-107	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-73	459.52	460	1.66	25
D-108	H ₃ C O NH ₂ NH ₂ NH ₃ C O NH ₂	A-73	512.63	513	1.90	41

TABLE 3-continued

	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-110	CH ₃ N N N N N N N N N N N N N N N N N N N	A-73	445.50	446	1.51	30
D-111	CH ₃ N N N N N N N N N N N N N N N N N N N	A-73	526.66	527	2.05	87
D-112	CH ₃ NH ₂ N N N N N N N N N N N N N N N N N N N	A-73	498.60	499	1.77	61

TABLE 3-continued

	TABLE 3-continued Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-113	NH2 NH2 NH2 NH4	A-73	430.48	431	1.42	80
D-114	CH ₃ NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-73	541.67	542	1.85	39
D-116	CH_3 N	A-73	502.55	503	1.72	22

	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-117	CH ₃ NH ₂ NH ₂ N N N N N N N N N N CH ₃	A-73	511.56	512	1.48	244
D-118	N N N N N N N N N N	A-73	458.54	459	1.57	48
D-119	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\$	A-73	486.55	487	1.49	114

	TABLE 3-continued					
	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-120	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\$	A-73	459.52	458	1.69	199
D-121	CH ₃ N N N N N N N N N N N N N N N N N N N	A-73	470.55	471	1.59	17
D-122	CH ₃ N N N N N N N N N N N N N N N N N N N	A-73	472.57	473	1.58	15

	TABLE 3-continued					
	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-123	CH ₃ N N F O N N F O O N N N N N N N N N N N	A-73	513.49	514	1.56	76
D-124	N N N N N N N N N N	A-73	487.58	488	1.58	43
D-125	CH ₃ NH ₂ NH ₂ NOH	A-73	473.55	474	1.48	93

	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-126	NH ₂ NH ₂ NH ₂ NH ₂ OH	A-73	521.59	522	1.63	144
D-127	CH ₃ NH ₂ NH ₂ NH ₂ CH ₃ CH ₃ CH ₃	A-73	472.57	473	1.48	80
D-128	N N N N N N N N N N	A-73	458.54	459	1.43	65

	TABLE 3-continued					1/4
	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-129	$_{\rm N}^{\rm CH_3}$ $_{\rm N}^{\rm NH_2}$ $_{\rm N}^{\rm NH_2}$ $_{\rm N}^{\rm NH_2}$ $_{\rm N}^{\rm CH_3}$	A-73	486.59	487	1.74	30
D-130	NH_2 NH_2 NH_3	A-73	500.62	501	1.96	45
D-131	$_{ m CH_3}$ $^{ m NH_2}$	A-73	445.50	446	1.37	57

	TABLE 3-contin	ued				
	Examples D-1-D2-	40				
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-132	N N N N N N N N N N	A-73	458.54	459	1.38	98
D-133	CH ₃ NH ₂ NH ₂ N N CH ₃ N O CH ₃	A-73	458.49	459	1.29	27
D-134	NH2	A-73	456.52	455	1.51	316

	TABLE 3-continued					
	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-135	CH ₃ N Chiral N HO N N N N N N N N N N N N N N N N N	A-73	445.50	446	1.55	122
D-136	CH ₃ NH ₂ NNH	A-77	501.03	499/501	1.83	106
D-138	H ₃ C NH ₂	A-77	504.03	504	1.69	95

TABLE 3-continued

	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-139	CH ₃ NH ₂ NH ₂ N N N CH ₃ N N CH ₃	A-77	543.11	543/545	1.96	146
D-140	CH ₃ NH ₂ NH ₂ N N CH ₃ CH ₃	A-77	474.99	475/477	1.68	221
D-141	NH2 CH3 NH2 O CI N O O	A-77	479.99	478	1.44	39

	TABLE 3-continued					
	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-142	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\$	A-77	475.98	476/478	1.72	80
D-143	N N N N N N N N N N	A-77	475.98	474/476	1.6	76
D-145	CH ₃ NH ₂ NhH ₂ Chiral N Chiral	A-77	447.92	448/450	1.49	76

	TABL	E 3-continued				
	Exan	nples D-1-D240				
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-146	CH ₃ NH ₂ Chiral N Chiral	A-77	447.92	448	1.49	79
D-147	NH2 NH2 NH2 NH42 NH42	A-77	461.95	460/462	1.57	33
D-148	CH ₃ NH ₂	A-77	543.11	543	2.08	115

TABLE 3-continued

	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-149	N N N N N N N N N N	A-77	489.02	487/489	1.69	105
D-150	N N N N N N N N N N	A-77	474.99	475/477	1.64	88
D-151	CH ₃ NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-77	515.06	515/517	1.84	83

	Examples D-1	-D240				
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-152	N N N N N N N N N N	A-77	446.94	447	1.48	73

D-154
$$NH_2$$
 A-77 474.99 475/477 1.64 122 NH_2 NH_2

	IABLE 3-continued	•				
	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-155	CH ₃ NH ₂ NN N N N N N N N N N N N N N N N N N	A-77	524.03	524	1.68	64
D-156	NH ₂ NH ₂ N N N N O O O H	A-77	461.95	462/464	1.52	40
D-157	CH ₃ NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-77	461.95	462/464	1.63	43

TABLE 3-continued

	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-159	H ₃ C NH ₂ N N CI NH CH ₃	A-77	461.95	462	1.58	38
D-160	CH ₃ NH ₂ NNH	A-77	537.06	M + H = 537/539	2.10	133
D-161	N N N N N N N N N N	A-93	498.63	499	1.66	156

TABLE 3-continued

	TABLE 3-continued					
	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-162	CH ₃ NH ₂ NH ₂ NH ₃ C N CH ₃	A-93	499.61	500	1.41	124
D-163	H ₃ C O _H NH ₂ NH ₃ C O N N _N	A-93	539,68	540	1.33	293
D-164	CH ₃ NH ₂ NH ₃ C NH ₃ C	A-93	457.53	458	1.29	91

	TABLE 3-contin	nued					
	Examples D-1-D2	40					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]	
D-165	N N N N N N N N N N	A-93	526.64	527	1.35	167	
D-166	N N N N N N N N N N	A-93	443.50	444	1.32	116	
D-167	N N N N N N N N N N	A-93	445.48	446	1.21	383	

	197				-	198
	TABLE 3-continue	ed				
	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-168	N N N N N N N N N N	A-93	429.48	430	1.31	105
D-169	N N N N N N N N N N	A-93	484.60	485	1.41	Nd
D-170	CH ₃ N N N N N O	A-93	524.67	525	1.84	Nd

TABLE 3-continued					
Examples D-1-D240					
Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
CH ₃ NH ₂	A-93	560.68	561	1.47	392
H ₃ C O N O					
CH ₃ NH ₂ Chiral	A-93	470.57	471	1.53	Nd
H_3C N H_3C N CH_3					
N N N N N N N N N N	A-93	470.57	469	1.53	282
	Structure CH ₃ NH ₂ CH ₃ NNH ₂ CH ₃ NH ₂ CH ₃ NH ₂ CH ₃ NH ₂ CH ₃ NH ₂ CH ₃ CH ₃ NH ₂ CH ₃ CH ₃ NH ₂ Chiral	Structure Int. NH2 A-93 NH2 A-93 NH2 A-93 NH2 A-93 NH2 A-93 NH3C NH3C NH2 A-93	Structure	Examples D-1-D240 Structure Int. MW [M+H] CH3 NH2 A-93 560,68 561 NH2 A-93 470,57 471 CH3 NH2 A-93 470,57 471 CH3 NH2 A-93 470,57 469 H3C NH2 A-93 470,57 469 CH3 NH2 A-93 470,57 469	Examples D-1-D240 Tall MW MW MW MW MW MW MW

TABLE 3-continued

	TABLE 3-continued					
	Examples D-1-D240					EC
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-175	NH_2 NH_2 NH_3 NH_3 NH_3	A-93	496.61	497	1.66	95
D-176	N N N N N N N N N N	A-93	538.69	539	1.95	384
D-177	N N N N N N N N N N	A-93	484.60	485	1.58	280

	203				2	204
	TABLE 3-cor	ntinued				
	Examples D-1-	-D240				
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-178	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{O} \\ \text{CH}_3 \\ \end{array}$	A-93	417.47	418	1.36	85
D-179	NH ₂	A-93	505.60	506	1.31	134

TABLE 3-continued

	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-181	NH ₂ NH ₃ N N N N N N N N N N N N N N N N N N N	A-93	524.67	523	1.81	205
D-182	$\begin{array}{c} CH_3 \\ N \\ N \\ N \end{array}$	A-93	486.57	487	1.30	180
D-183	N N N N N N N N N N	A-93	498.58	499	1.20	218

	Examples D-1-D2	40				
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-185	CH ₃ NH ₂ NH ₃ C N N N N N N N N N N N N N N N N N N N	A-93	538.69	539 (762)	1.94 (2.03)	1140

TABLE 3-continued

	TABLE 3-continued Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R	EC ₅₀ PC3 [nM]
D-187	CH ₃ NH ₂ NH ₃ C N N N N N N N N N N N N N N N N N N N	A-93	532.64	533	1.71	296
D-188	CH ₃ N N N N N N N N N N N N N N N N N N N	A-79	474.57	475	1.74	62
D-189	N N N N N N N N N N	A-79	456.55	457	1.43	63

		Examples D-1-D240					
Nr.	Structure		Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-190	CH ₃	NH ₂ NH ₂ CH ₃	A-79	454.58	455	1.72	62

A-79 452.56 453 1.54 55

1.42 69

	Exam	ples D-1-D240				
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-192	CH ₃ N N N N N N N N N N N N N N N N N N N	A-79	516.62	517	1.34	140

	TABLE 3-continued					
	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-194	CH ₃ N O O O O O O O O O O O O O O O O O O	A-79	442.52	443	1.29	134
D-195	CH ₃ N N N N N N N N N N N N N N N N N N N	A-79	466.59	467	1.68	51
D-196	N N N N N N N N N N	A-73	462.53	463	1.52	144

TABLE 3-continued

	Ex	nples D-1-D240				
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-197	CH ₃ NH ₂ N N N N N N N N N N N N N N N N N N N	A-73	458.54	459; tR = 1.68	1.68	122

	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-200	CH ₃ NH ₂ Chiral N Chiral	A-73	472.57	473	1.81	451
D-201	$\begin{array}{c} CH_{3} \\ N \\ N \end{array}$	A-73	502.59	503	1.60	90
D-202	CH ₃ NH ₂ NH ₂ NH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	A-73	514.65	515	1.90	200

		Examples D-1-D240				
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-203	CH ₃ N HO N	A-73	431.47	432	1.43	58

D-205
$$NH_2$$
 A-73 541.67 542 1.80 308 CH_3 NH_2 NH_2

	TABLE 3-continued Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-206	NH2 NH2 NH2 NH2 NH2 OH	A-73	514.60	515	1.50	154
D-207	CH ₃ NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-73	498.60	499	1.80	71
D-208	CH ₃ NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-73	567.71	568	1.88	118

	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-209	CH ₃ NH ₂	A-73	484.58	485	1.75	77

D-210
$$NH_2$$
 A-73 527.64 528 1.68 172 NH_2 NH_2

		Examples D-1-D	0240				
Nr.	Structure		Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-212	CH ₃	F O HN SSOO	A-73	479.53	480	1.49	75

D-213
$$NH_2$$
 A-73 500.62 501 1.76 132 CH_3 NH_2 CH_3 H_3 CH_3 H_3 CH_3 H_4 CH_3 H_5 CH_5 CH_5 CH_5

D-214
$$NH_2$$
 A-73 445.50 446 1.55 45 NH_2 NH_2

		TABLE 3-continue					
		Examples D-1-D240					
Nr.	Structure		Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-215	CH ₃ CH ₃ CH ₃ CH ₃	T _O	A-73	458.54	459	1.57	64

		Examples D-1-D2	240				
Nr.	Structure		Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-218	CH ₃	F O N O	A-73	417.44	418	1.56	57

	Examples D-	1-D240				
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-221	N N N N N N N N N N	A-73	405.43	406	1.60	35

	Examples D-1-D24	.0				
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-224	CH ₃ NH ₂ NH ₂ OH	A-75	415.45	416	1.39	106

D-225
$$NH_2$$
 A-75 387.44 388 1.54 66 NH_3 NH_2 NH_2 NH_3 NH_4 NH_4 NH_4 NH_5 NH_5 NH_6 NH_6

TABLE 3-continued

	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-227	CH ₃ N N N O N O N O N O N O N O N O N O N	A-83	417.44	418 (363)	1.55 (1.63)	100

D-229
$$NH_2$$
 A-83 391.40 392 1.47 64 NH_2 NH_2

		Examples D-1-D240				
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-230	CH ₃ N O N O N	2 A-81	419.87	420/422	1.47	62

	TABLE 3-continued	1				
	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-233	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{N} \\ \text{O} \\ \text{CH}_3 \\ \end{array}$	A-81	407.86	408/410	1.52	61
D-234	CH ₃ NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-73	500.58	501	1.36	73
D-235	CH ₃ NH ₂ N N N N N N N N N N N N N N N N N N N	A-73	484.58	485	1.52	78

	Examples D-1-D240					
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-236	N N N N N N N N N N	A-73	458.54	459	1.40	49
D-237	$\begin{array}{c} \text{CH}_{3} \\ \text{N} \\ \text{Chiral} \\ \\ \text{N} \\ \text{CH}_{3} \\ \\ \text{CH}_{3} \\ \end{array}$	A-73	458.54	459	1.40	77
D-238	CH_3 N N CH_3 CH_3 CH_3	A-73	486.59	487	1.58	71

	TABLE	3-continued				
	Examp	les D-1-D240				
Nr.	Structure	Int.	MW	MW [M + H]	t _R [min]	EC ₅₀ PC3 [nM]
D-239	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-73	431.47	432	1.38	53

D-240
$$NH_2$$
 A-52 427.51 428 1.41 248 NH_2 NH_2

Examples E

Examples E-1 to E-349 can be synthesized according to the general procedure GP9 (Amide formation) outlined above. The appropriate intermediates for synthesis can be deduced from the table of the examples.

TABLE 4

	Examples E-1-E-349			
Nr.	Structure	Int.	MW	MW [M + H] tR [min]
E-1	H_3C N	A-100	462.5	463 1.63

	TABLE 4-continued								
	Examples E-1-E-349								
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]				
E-3	H_3C N	A-100	476.53	477	1.72				
E-4	H_3C N	A-100	490.56	491	1.86				
E-5	H_3C NH_2 N	A-100	506.55	507	1.68				

	TABLE 4-continued							
	Examples E-1-E-349							
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]			
E-6	H ₃ C NH ₂ N N N N N N N N N N N N N N N N N N N	A-100	532.59	533	1.68			
E-7	$_{\mathrm{O}}$ $_{\mathrm{NH}_{2}}$	A-100	502.57	503	1.86			
	F N N N N N N N N N N N N N N N N N N N							
E-8	H_3C N	A-100	504.58	505	1.94			

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-9	H ₃ C NH ₂ N N F N O F N O	A-100	532.59	533	1.65
E-10	NH2	A-100	407.42	408	1.63

	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-12	H_3C N	A-100	393.4	394	1.5

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-15	N N N N N N N N N N	A-73	459.52	458	1.69
F 16	NII	. 72	156.50	455	

TABLE 4-continued

Examples E-1-E-349						
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]	
E-18	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-77	501.03	499/501	1.83	
E-19	CH ₃ NH ₂ NO CI	A-77	518.01	518/520	1.74	
E-20	H_3C N	A-77	504.03	504	1.69	

TABLE 4-continued

	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-21	CH ₃ N N N CH ₃ CH ₃	A-77	543.11	543/545	1.96
E-22	CH ₃ NH ₂ NH ₂ N CH ₃ N CH ₃	A-77	474.99	475/477	1.68
E-23	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{N} \\ \text{O} \\ \\ \text{O} \\ \end{array}$	A-77	479.99	478	1.44

TABLE 4-continued

	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-24	CH ₃ NH ₂ NH ₂ NH ₃ C	A-77	475.98	476/478	1.75
E-25	CH ₃ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₂ NH ₃ NH ₂ NH ₃ NH ₃ NH ₃ NH ₄ NH ₄ NH ₅	A-77	475.98	474/476	1.6
E-26	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{CI} \\ \text{N} \\ \text{CH}_3 \end{array}$	A-77	529.08	529/531	1.81

	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-27	CH ₃ NH ₂ NhH ₂ Chiral Chiral HO	A-77	447.92	448/450	1.49

TABLE 4-continued

	TABLE 4-continued						
Examples E-1-E-349							
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]		
E-30	CH ₃ NH ₂	A-77	543.11	543	2.08		
E-31	N N N N N N N N N N	A-77	489.02	487/489	1.69		
E-32	N N N N N N N N N N	A-77	474.99	475/477	1.64		

	TABLE 4-continued						
Examples E-1-E-349							
Nr.	Structure	Int.	MW	MW [M+H] tR [min]			
E-33	CH ₃ NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-77	515.06	515/517 1.84			
E-34	NH ₂	A-77	446.94	447 1.48			

TABLE 4-continued

	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-36	CH ₃ NH ₂ NH ₂ N N CH ₃	A-77	474.99	475/477	1.64
E-37	CH ₃ NH ₂ NN N N N N N N N N N N N N N N N N N	A-77	524.03	524	1.68
E-38	CH ₃ NH ₂ NH ₂ NOH	A-77	461.95	462/464	1.52

	TABLE 4-continued				21
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-39	CH ₃ NH ₂ NO CI	A-77	461.95	462/464	1.63
E-40	H ₃ C NH ₂	A-77	501.03	501	1.72
E-41	H ₃ C NH ₂	A-77	461.95	462	1.58

TABLE 4-continued

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-42	CH ₃ NH ₂	A-77	537.06	537/539	
	O CI N				
E-43	CH ₃ NH ₂	A-93	498.63	499	1.66
	H ₃ C O N				
E-44	CH ₃ NH ₂ NH ₂	A-93	499.61	500	1.41
	H_3C O O CH_3 O				

TABLE 4-continued

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-45	N N N N N N N N N N	A-93	539.68	540	1.33
E-46	N N N N N N N N N N	A-93	457.53	458	1.29
E-47	N N N N N N N N N N	A-93	526.64	527	1.35

TABLE 4-continued

	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-48	CH ₃ NH ₂ NH ₂ NH ₃ C N N N N N N N N N N N N N N N N N N N	A-93	443.5	444	1.32

TABLE 4-continued

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-51	N N N N N N N N N N	A-93	484.6	485	1.41
E-52	N N N N N N N N N N	A-93	524.67	525	1.84
E-53	N N N N N N N N N N	A-93	524.67	525	1.56

TABLE 4-continued

	TABLE 4-continued					
Examples E-1-E-349						
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]	
E-54	CH ₃ NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-93	560.68	561	1.47	
E-55	N N N N N N N N N N	A-93	470.57	471	1.53	
E-56	N N N N N N N N N N	A-93	470.57	469	1.53	

TABLE 4-continued

Examples E-1-E-349						
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]	
E-57	CH ₃ NH ₂ NH ₃ C N N N N N N N N N N N N N N N N N N N	A-93	496.61	497	1.66	
E-58	N N N N N N N N N N	A-93	538.69	539	1.95	
E-59	N N N N N N N N N N	A-93	484.6	485	1.58	

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-60	N N N N N N N N N N	A-93	417.47	418	1.36
E-61	H_3C N	A-93	505.6	506	1.3
E-62	N N N N N N N N N N	A-93	515.58	515	1.67

 \sim_{CH_3}

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-63	N N N N N N N N N N	A-93	524.67	523	1.81
E-64	N N N N N N N N N N	A-93	486.57	487	1.3
E-65	N N N N N N N N N N	A-93	498.58	499	1.2

TABLE 4-continued

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-66	H_3C N	A-93	496.61	497	1.45
E-67	N N N N N N N N N N	A-93	538.69	539	1.94
E-68	N N N N N N N N N N	A-93	510.64	511	1.62

544.1 542/544 1.59

TABLE 4-continued

	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-69	CH ₃ NH ₂ NH ₂ N NH ₃ C N N N N N N N N N N N N N N N N N N N	A-93	532.64	533	1.71

$$\begin{array}{c} \text{E-70} \\ \text{CH}_{3} \\ \text{N} \end{array}$$

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-71	NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-77	531.06	531	1.62
E-72	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{CI} \\ \text{O} \end{array}$	A-77	447.92	446/448	1.59
E-73	N N N N N N N N N N	A-77	449.9	448/450	1.46

	TABLE 4-continued				2)
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-74	CH ₃ NH ₂ NCH ₃ NO	A-77	433.9	432/434	1.59
E-75	N N N N N N N N N N	A-77	489.02	487/489	1.68
E-76	CH ₃ NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-77	529.08	527/529	1.95

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-77	CH ₃ Chiral NH ₂ Chiral Chiral CH ₃ CH ₃	A-77	474.99	473/475	1.62
E-78	N N N N N N N N N N	A-77	474.99	473/475	1.61
E-79	CH ₃ NH ₂ NO	A-77	421.89	422	1.64

TABLE 4-continued

	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-80	H_3C N	A-77	510.02	510/512	1.57
E-81	O O O O O O O O O O	A-77	539.06	539	1.66
E-82	CH_3 N	A-77	519	517/519	1.76

TABLE 4-continued

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-83	CH ₃ NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-77	529.08	529	1.91
E-84	CH ₃ N N N N N N N N N N N N N N N N N N N	A-77	490.99	491	1.54
E-85	N N N N N N N N N N	A-77	503	503	1.54

TABLE 4-continued

	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-86	CH ₃ NH ₂ CH ₃ CH ₃	A-106	482.63	483	1.87
E-87	CH ₃	A-106	483.61	484	1.62
	CH ₃ N CH ₃ O				
E-88	H ₃ C — CH ₃ OH NH ₂	A-106	510.64	511	1.57
	CH ₃				

TABLE 4-continued

	TABLE 4-continued Examples E-1-E-349				
	Examples E-1-E-549			MW	
Nr.	Structure	Int.	MW	[M + H]	tR [min]
E-89	CH ₃ NH ₂ NCH ₃ O	A-106	523.68	522	1.54
	N CH ₃				
E-90	CH ₃ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₃ NH ₃ NH ₃ NH ₃ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	A-106	441.53	440	1.5
E-91	HO NH ₂	A -106	510.64	511	1.56
	CH ₃				

TABLE 4-continued

	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-92	CH ₃ NH ₂	A-106	427.51	428	4.52

TABLE 4-continued

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-95	N N N N N N N N N N	A-106	468.6	467	1.62
E-96	CH ₃ N N CH ₃ N N N N N N N N N N N N N N N N N N N	A-106	508.67	507	1.88
E-97	CH_3 CH_3 CH_3 CH_3 CH_3	A-106	508.67	509	1.74

TABLE 4-continued

	TABLE 4-continued Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-98	CH ₃ NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-106	544.68	545	1.49
E-99	N N N N N N N N N N	A-106	454.58	453	1.56
E-100	N N N N N N N N N N	A-106	454.58	453	1.55

TABLE 4-continued

	TABLE 4-continued Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-101	CH ₃ NH ₂ NH ₂ NH ₂ NH ₃ N N N N N N N N N N N N N N N N N N N	A-106	480.61	479	1.7
E-102	CH ₃ NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-106	522.69	523	1.99
E-103	$^{\mathrm{CH_{3}}}$ $^{\mathrm{NH_{2}}}$ $^{\mathrm{CH_{3}}}$ $^{\mathrm{CH_{3}}}$ $^{\mathrm{CH_{3}}}$ $^{\mathrm{CH_{3}}}$	A-106	468.6	467	1.61

	TABLE 4-continued						
Examples E-1-E-349							
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]		
E-104	N N N N N N N N N N	A-106	401.47	402	1.57		
E-105	CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 $COM A COM $	A-106	489.6	490	1.51		
E-106	CH_3 NH_2 CH_3 $O=S=O$	A-106	518.64	517	1.61		

TABLE 4-continued

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-107	CH ₃ NH ₂ NH ₂ CH ₃ O N N N N N N N N N N N N	A-106	498.58	499	1.69
	O CH ₃				
E-108	CH ₃ NH ₂ NH ₂ NH ₃ CH ₃ O	A-106	468.56	469	1.46
E-109	CH ₃ NH ₂ NH ₂ NNH ₂	A-106	508.67	509	1.84

	TABLE 4-continued				32
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-110	CH ₃ CH ₃ NH ₂ NH ₂ NH ₂ NH ₂ O HN O	A-106	470.57	469	1.5
E-111	N N N N N N N N N N	A-106	482.58	481	1.48
E-112	CH_3 CH_3 CH_3 CH_3 CH_3	A-106	480.61	481	1.64

TABLE 4-continued

	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-113	N N N N N N N N N N	A-106	522.69	523	2.19

TABLE 4-continued

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-115	CH ₃ NH ₂ NN	A-106	516.65	517	1.92
E-116	CH ₃ NH ₂ NH ₂ NN	A-106	480.61	481	1.82
E-117	CH ₃ NH ₂	A-106	497.6	498	1.71

TABLE 4-continued

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-118	$_{\rm N}^{\rm CH_3}$ $_{\rm N}^{\rm NH_2}$ $_{\rm N}^{\rm CH_3}$ $_{\rm N}^{\rm CH_3}$ $_{\rm N}^{\rm CH_3}$	A-106	455.56	454	1.68
E-119	$_{\rm CH_3}$ $_{\rm CH_3}$ $_{\rm CH_3}$ $_{\rm CH_3}$	A-106	522.69	523	2.03
E-120	CH ₃ NH ₂ NH ₂ NH ₂ NH ₃ CH ₃ CH ₃ N CH ₃	A-106	454.58	455	1.65

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-121	N N N N N N N N N N	A-106	459.57	460	1.41
E-122	CH ₃ CH ₃ NH ₂ CH ₃ CH ₃ CH ₃	A-106	455.56	456	1.56
E-123	CH ₃ Chiral CH ₃ Chiral	A-106	427.51	428	1.45

TABLE 4-continued

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-124	CH ₃ Chiral N Chiral N HO	A-106	427.51	428	1.45
E-125	N N N N N N N N N N	A-106	454.58	455	1.60
E-126	CH ₃ NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-106	494.64	495	1.83

TABLE 4-continued

	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-127	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{N} \\ \text{H} \end{array}$	A-106	426.52	427	1.46

E-128
$$NH_2$$
 A-106 387.44 388 1.25 CH_3 NH_2 A-106 NH₂ NH_2 NH

TABLE 4-continued

TABLE 4-continued						
Examples E-1-E-349						
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]	
E-130	CH ₃ NH ₂ CH ₃ N N N N N N N N N N N N N	A-106	503.61	504	1.81	
E-131	CH ₃ CH ₃ N N N N N N N N N N N N N	A-106	503.61	504	1.64	
E-132	N NH ₂ CH ₃ OH	A-106	441.53	442	1.47	

TABLE 4-continued

	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-133	CH ₃ CH ₃ N CH ₃ O N N N N N N N N N N N N	A-106	441.53	442	1.58
E-134	N N N N N N N N N N	A-106	441.53	442	1.54
E-135	CH ₃ CH ₃ CH ₃ O N N N O N N N N N N N N	A-106	502.62	503	1.95

TABLE 4-continued

	TABLE 4-continued						
Examples E-1-E-349							
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]		
E-139	CH ₃ NH ₂ Chiral N Chiral	A-77	487	487/489	1.71		
E-140	CH ₃ N Chiral N N N N N N N N N N N N N N N N N N N	A-73	470.55	471	1.67		
E-141	CH ₃ NH ₂ Chiral N Chiral	A-77	487	487/488	1.71		
E-142	CH ₃ N Chiral N N N N N N N N N N N N N N N N N N N	A-73	470.55	471	1.67		

TABLE 4-continued

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-143	CH ₃ NH ₂ Chiral N Chiral	A-77	501.03	501/503	1.74
E-144	CH ₃ NH ₂ Chiral	A-73	484.58	485	1.7
E-145	F O NH2 CH3 N Chiral	A-73	484.58	485	1.56
E-146	CH ₃ N N N F O CH ₃ N N N CH ₃ N N N N N N N N N N N N N N N N N N N	A-100	568.65	569	1.28

TABLE 4-continued

	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-147	CH ₃ NH ₂	A-100	485.5	486	1.25
E-148	NH2 NH2 NH2 N N N N N N N N N N N N N N	A-100	486.48	487	1.17
E-149	NH_2	A-100	499.52	500	1.30

TABLE 4-continued

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-150	NH2 NH2 NH2 NH2	A-100	489.52	490	1.33
E-152	NH2 NH2 NH2 NH2 NH2 NH2 NH3 NH2	A-100	569.63	570	1.28
E-153	CH ₃ NH ₂ N N N N N N N N N N N N N N N N N N N	A-100	502.57	503	1.50

TABLE 4-continued

	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-154	N N N N N N N N N N	A-101	585.1	585/587	1.31
E-155	CH ₃ NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-101	501.95	502/504	1.29
E-156	N N N N N N N N N N	A-101	502.94	503/505	1.2

TABLE 4-continued

TABLE 4-continued								
	Examples E-1-E-349							
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]			
E-157	N N N N N N N N N N	A-100	515.98	516	1.34			
E-158	CH ₃ NH ₂ N N N N CI N N N N N N N N N N N N N N	A-100	505.98	506	1.37			
E-159	CH ₃ NH ₂ NH ₂ N N CI N CH ₃ N N CH ₃ N O	A-100	586.09	586	1.31			

TABLE 4-continued

	TABLE 4-continued				
	Examples E-1-E-349			MW	
Nr.	Structure	Int.	MW		tR [min]
E-160	NH_2	A-101	519.02	519	1.54
E-161	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{F} \\ \text{N} \\ \text{H} \end{array}$	A-101	488.54	489	1.23
E-162	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{N} \end{array}$	A-101	504.99	505/507	1.26

TABLE 4-continued

	TABLE 4-continued Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-163	CH ₃ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₃ NH ₃ NH ₃ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	A-73	512.55	513	1.25
E-164	NH2 NH2 N N N N N N N N N N N N N N N N	A-73	471.53	472	1.42
E-165	CH ₃ NH ₂	A-73	468.53	469	1.48

TABLE 4-continued

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H] tR [m	in]
E-166	NH2 NH2 NH2 F F	A-73	465.48	466 1.6	2
E-167	CH ₃ NH ₂ NH ₂ NH NH NH NH	A-73	473.55	474 1.4!	9
E-168	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{N} \\ \text{N} \end{array}$	A-73	458.54	459 1.3	2

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-169	N N N N N N N N N N	A-73	459.52	460	1.24
E-170	\sim NH $_2$	A-100	530.54	531	1.16

TABLE 4-continued

	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-172	CH ₃ NH ₂ NH ₂ NH ₂ NH ₂ CH	A-100	486.52	487	1.31
E-173	CH ₃ NH ₂ NH ₂ NF F	A-100	483.47	484	1.41
E-174	CH ₃ N N N N N N N N N N N N N N N N N N N	A-100	491.54	492	1.14

TABLE 4-continued

	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-175	CH ₃ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₄ NH ₄ NH ₄ NH ₅ NH ₆ NH ₇	A-100	476.53	477	1.3

TABLE 4-continued

	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-178	H ₃ C N CH ₃	A-103	528.63	529	1.69
E-179	H ₃ C N CH ₃	A-103	528.63	529	1.71
E-180	CH ₃ Chiral CH ₃ Chiral CH ₃ CH ₃ CH ₃	A-103	472.57	473	1.68

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-181	CH ₃ Chiral N CH ₃ Chiral CH ₃ CH ₃ CH ₃	A-103	472.57	473	1.68
E-182	H ₃ C CH ₃ NH N N CH ₃ CH ₃	A-103	458.54	459	1.66
E-183	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	A-103	541.67	542	1.65
E-184	H_3 CH ₃ H_3 C CH ₃ H_3 C CH ₃	A-105	518.06	518	1.80

TABLE 4-continued

	TABLE 4-continued								
	Examples E-1-E-349								
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]				
E-185	H ₃ C N CH ₃	A-105	545.08	545	1.73				
E-186	H ₃ C N CH ₃	A-105	545.08	545	1.75				
E-187	CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	A-105	525	525	1.88				

TABLE 4-continued

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-188	CH ₃ Chiral	A-105	489.02	489	1.73
	CH ₃				
E-189	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	A-105	489.02	489	1.80
E-190	CH ₃ Chiral	A-105	489.02	489	1.73
	CI CH_3 CH_3				
E-191	H ₃ C NH	A-105	474.99	475	1.70
	$\bigcup_{\mathrm{CH}_3}^{\mathrm{N}}$				

TABLE 4-continued

	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-192	CH ₃ CH ₃ CH ₃ CH ₃	A-105	558.13	558	1.69

TABLE 4-continued

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-196	N N N N N N N N N N	A-102	509.44	509/511/ 513	1.73
E-197	H_3C N	A-102	495.41	495	1.69
E-198	H_3C N	A-102	509.44	509/511/ 513	1.61
E-199	H_3C N	A-102	553.49	553/55/ 557	1.64

TABLE 4-continued

	TABLE 4-continued								
	Examples E-1-E-349								
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]				
E-200	H ₃ C OH CI CH ₃	A-102	524.45	524	1.55				
E-201	H_3C N	A-102	538.48	538	1.60				
E-202	CH ₃ NH ₂ NH ₂ N N Cl N F F	A-102	545.42	545/547/ 549	1.69				
E-203	H_3C N NH_2 OH CH_3	A-102	510.42	510	1.50				

TABLE 4-continued

	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-204	CH ₃ NH ₂ NCI N N N N N N N N N N N N N N N N N N	A-102	509.39	509	1.45

TABLE 4-continued

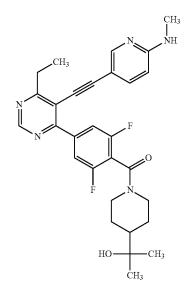

	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-207	CH ₃ Chiral N CH ₃ Chiral	A-104	502.57	503	1.69
E-208	CH ₃ NH NH CH ₃ NH CH ₃ NH CH ₃	A-104	490.51	491	1.45
E-209	CH ₃ NH Chiral NH Chiral CH ₃ Chiral	A-104	490.56	491	1.58

TABLE 4-continued

	TABLE 4-continued Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-210	CH ₃ NH NH NH NH NH	A-104		477	1.56
E-211	H ₃ C N CH ₃ H CH ₃	A-104	490.56	491	1.65
E-212	H ₃ C CH ₃ NH CH ₃ NH CH ₃ NH	A-104	534.61	535	1.86
	$_{\mathrm{H_{3}C}}$ $_{\mathrm{CH_{3}}}$				

TABLE 4-continued

Examples E-1-E-349						
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]	
E-213	CH ₃ NH NH NH HO CH ₃	A-104	505.57	506	1.76	

A-104 519.59 520 1.82

TABLE 4-continued

Examples E-1-E-349						
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]	
E-215	H ₃ C N CH ₃	A-104	546.62	547	1.58	

TABLE 4-continued

	TABLE 4-continued				
-	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-217	CH ₃ NH CH ₃ NH F N F N F N F N F N F N F N	A-104	526.54	527	1.74
E-218	CH ₃ NH NH NH CH ₃ NH NH CH ₃	A-104	491.54	492	1.55
E-219	H ₃ C N CH ₃	A-104	490.51	491	1.45

TABLE 4-continued

	17 IDEE 4 continued							
	Examples E-1-E-349							
Nr.	Structure	Int.	MW	MW [M + H] tR [min]				
E-220	CH ₃ NH NH NH HO	A-104	491.54	492 1.69				

A-104 515.57 516 1.76

	391				392
	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-222	H_3C N	A-108	538.57	539	1.86
E-223	H ₃ C NH ₂ Chiral	A-108	536.56	537	1.86

TABLE 4-continued

	TABLE 4-continued			
	Examples E-1-E-349			
Nr.	Structure	Int.	MW	MW [M + H] tR [min]
E-225	H_3C N	A-108	510.52	511 1.67
E-226	H_3C N	A-108	524.54	525 1.76
E-227	H_3C N	A-108	553.58	554 1.76

TABLE 4-continued

	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-228	H_3C N	A-108	580.61	581	1.70
E-229	N N N N N N N N N N	A-107	494.52	495	1.47
E-230	CH ₃ NH ₂ NH ₂ NH ₂ NH ₃ C CH ₃	A-107	522.57	523	1.66

TABLE 4-continued

	TABLE 4-Continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-231	CH ₃ N N N N N N N N N N N N N N N N N N N	A-107	508.55	509	1.74
E-232	V V V V V V V V V V	A-107	537.58	538	1.73
E-233	N N N N N N N N N N	A-101	478.96	479	1.47

TABLE 4-continued

	TABLE 4-continued					
Examples E-1-E-349						
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]	
E-234	N N N N N N N N N N	A-101	507.01	507	1.67	
E-235	N N N N N N N N N N	A-101	492.98	493	1.56	
E-236	CH ₃ NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-101	549.05	549	1.49	

TABLE 4-continued

	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-237	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{N} \\ \text{CI} \\ \text{N} \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \end{array}$	A-101	522.02	522	1.55

TABLE 4-continued

	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-240	N N N N N N N N N N	A-101	537.04	537/539	1.59
E-241	N N N N N N N N N N	A-101	507.99	508/510	1.5
E-242	N N N N N N N N N N	A-101	493.97	494	1.43

TABLE 4-continued

Examples E-1-E-349							
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]		
E-243	CH ₃ NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-101	517.99	518	1.49		
E-245	N NH2 N N N N N N N N N N	A-73	484.58	485	1.83		
E-246	CH ₃ NH ₂ NH ₂ NH N N N N N N N N N N N N N N N N N N	A-73	551.64	552	1.55		

TABLE 4-continued

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-247	H_3C N	A-73	481.53	482	1.61
E-248	CH ₃ NH ₂ NNH ₂ NNN NNN NNN NNN NNN NNN NNN NNN NNN N	A-73	468.49	469	1.42
E-249	CH ₃ NH ₂ NNH	A-73	467.51	468	1.53
E-250	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{N} \\ \text{O} \end{array}$	A-73	550.66	551	1.55

TABLE 4-continued

TABLE 4-continued										
	Examples E-1-E-349									
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]					
E-251	CH ₃ NH ₂ N N N N N N N N N N N N N N N N N N N	A-77	487	487	1.74					
E-252	$\begin{array}{c} N\\ H\\ \end{array}$	A-77	501.03	501	1.89					
E-253	CH ₃ NH ₂ NH ₂ NNH Cl NN CH ₃ NH Cl NNH CH ₃ NH	A-77	568.1	568	1.59					

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-254	H_3C N	A-77	497.99	498	1.64
E-255	CH ₃ NH ₂ NNH ₂ NNN NNN NNN NNN NNN NNN NNN NNN NNN N	A-77	484.95	485	1.46
E-256	CH ₃ NH ₂ NNH	A-77	483.96	484	1.57
E-257	CH ₃ NH ₂ NH ₂ CH ₃ CH ₄	A-77	567.11	567	1.59

TABLE 4-continued

Examples E-1-E-349							
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]		
E-258	H ₃ C NH	A-109	578.71	579	1.61		

TABLE 4-continued

	IABLE 4-continued								
	Examples E-1-E-349								
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]				
E-260	CH ₃ N CH ₃ CH ₃ N N N N N N N N N N N N N	A-109	495.56	496	1.6				
E-261	CH ₃ N N N N N N N N N N N N N	A-109	496.55	497	1.48				
E-262	CH ₃ CH ₃ CH ₃ CH ₃	A-109	509.59	510	1.66				

TABLE 4-continued

	TABLE 4-continued									
	Examples E-1-E-349									
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]					
E-263	CH ₃ CH ₃ CH ₃ CH ₃	A-109	499.59	500	1.69					
E-264	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	A-109	579.7	580	1.60					
E-265	CH ₃ CH ₃ N CH ₃ N CH ₃	A-109	512.63	512	1.91					

TABLE 4-continued

Examples E-1-E-349								
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]			
E-266	CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	A-109	598.72	599	2.05			

	TABLE 4-continued						
Examples E-1-E-349							
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]		
E-268	CH ₃ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₅ NH ₆ NH ₇	A-73	470.55	471	1.18		
E-269	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{N} \end{array}$	A-73	442.5	443	1.11		
E-270	CH ₃ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₃ NH ₄ NH ₄ NH ₅ NH ₅ NH ₆ NH ₇	A-77	458.95	459	1.13		

TABLE 4-continued

	TABLE 4-continued							
Examples E-1-E-349								
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]			
E-271	CH ₃ NH ₂ N N N N N N N N N N N N N N N N N N N	A-73	486.55	487	1.13			
E-272	N N N N N N N N N N	A-73	486.59	487	1.3			
E-273	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{O} \end{array}$	A-77	503	503	1.15			
E-274	$\begin{array}{c} CH_3 \\ N \\ N \\ CI \\ N \\ CH_3 \\ CH_3 \\ CH_3 \\ \end{array}$	A-77	503.05	503	1.33			

	TABLE 4-continued								
Examples E-1-E-349									
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]				
E-275	H_3C N	A-100	504.54	505	1.17				
E-280	H_3C N	A-87	500.58	501	1.16				
E-281	$\begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \end{array}$	A-87	500.62	501	1.33				

TABLE 4-continued

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-282	CH ₃ NH ₂ N N N N N N N N N N N N N N N N N N N	A-101	520.99	521	1.20
E-283	CH_3 NH_2 NH_2 NH_3 NH_3 NH_3 NH_3 NH_3 NH_3	A-101	521.04	521	1.38
E-284	H ₃ C NH ₂ N NH ₂ N NH ₂	A-77	490.01	490/492	1.12

TABLE 4-continued

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-285	NH2 CH3 NH2 CI N N N N N N N N N N N N N	A-101	492.98	493	1.22
E-286	H ₂ N NH ₂ CH ₃ N NH ₂ N NH ₂ N N N N N N N N N N N N N N N N N N N	A-101	508	508	1.19
E-287	NH ₂ CH ₃ NH ₂ NH	A-73	456.52	457	1.15

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-288	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{F} \\ \text{O} \\ \text{CH}_3 \end{array}$	A-100	474.51	475	1.19
E-289	NH ₂	A-101	490.97	491	1.22

TABLE 4-continued

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-291	N N N N N N N N N N	A-73	502.59	503	1.28
E-292	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{N} \end{array}$	A-73	488.56	489	1.16
E-293	$\begin{array}{c} CH_3 \\ N \\ N \\ O \end{array}$	A-73	539.61	540	1.29
E-294	N N N N N N N N N N	A-73	514.6	515	1.20

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-295	CH ₃ N N N N N N N N N N N N N N N N N N N	A-73	478.53	479	1.27
E-296	$\begin{array}{c} CH_{3} \\ N \\ N \\ OH \end{array}$	A-73	488.56	489	1.18
E-297	N N N N N N N N N N	A-100	543.58	544	1.29

TABLE 4-continued

	Examples E-1-E-349				
Nr.	Structure Structure	Int.	MW	MW [M + H]	tR [min]
E-298	CH_3 N	A-100	520.58	521	1.33
E-299	H_3C N NH_2 OH CH_3	A-100	506.55	507	1.21
E-300	$H_{3}C$ N	A-100	557.6	558	1.33

TABLE 4-continued

	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-301	NH2 NH2 NH2 NH2 NHO	A-100	532.59	533	1.22

$$\begin{array}{c} & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

A-100 536.58 537 1.17

TABLE 4-continued

	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-303	NH2 NH2 NH2 N N N N N N N N N N N N N N	A-100	517.53	516	1.26

A-101 560.03 560 1.32

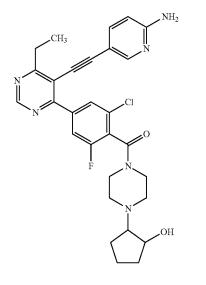

1.24

TABLE 4-continued

	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-305	NH_2 NH_2 NH_2 NH_2 NH_3 NH_4 NH_4 NH_5	A-101	537.04	537	1.36

TABLE 4-continued

	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-307	H_3C N	A-101	574.06	574	1.36

A-101 549.05 549 1.25

TABLE 4-continued

	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-309	N N N N N N N N N N	A-101	523.01	523	1.25

TABLE 4-continued

	TABLE 4-continued Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-311	CH ₃ NH ₂ N N Cl N O	A-101	533.99	534/536	1.3
E-312	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{N} \\ \text{O} \end{array}$	A-77	542.04	542/544	1.28
E-313	$\begin{array}{c} CH_3 \\ N \\ N \\ \end{array}$	A-77	519.05	519	1.3
E-314	CH_3 CH_3 CH_3 CH_3 OH	A-77	505.02	505	1.19

TABLE 4-continued

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-315	$\begin{array}{c c} & & & & \\ & & & & \\ N & & & & \\ N & & & &$	A-77	556.07	556/558	1.31
E-316	N N N N N N N N N N	A-77	531.06	531/533	1.21
E-317	$\begin{array}{c} CH_3 \\ N \\ N \\ O \end{array}$	A-77	505.02	505	1.21
E-318	N N N N N N N N N N	A-77	535.04	535/537	1.16

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-319	CH ₃ NH ₂ NH ₂ NH ₃ C O NH	A-73	584.69	585	1.46
E-320	H ₃ C CH ₃ NH ₂ N N N N N N N N N N N N N	A-73	484.58	485	1.19
E-321 H ₃ C N	NH ₂ NH ₂ NH ₂ NH ₃ C	A-73 CH ₃	600.69	601	1.43

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-322	H_3C N	A-73	500.58	501	1.15
E-323	$\begin{array}{c} CH_{3} \\ N \\ N \\ N \\ \end{array}$	A-73	556.64	557	1.40
E-324	CH ₃ NH ₂ N N N N N N N N N N N N N N N N N N N	A-73	456.52	457	1.12

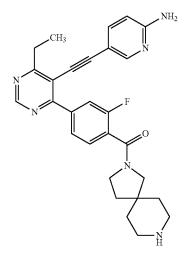

1.15

TABLE 4-continued

	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-325	CH ₃ NH ₂ NH ₂ N N N N N N N N N N N N N N N N N N N	A-73	600.69	601	1.45

TABLE 4-continued

TABLE 4-Continued									
	Examples E-1-E-349								
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]				
E-327	$\begin{array}{c} CH_{3} \\ N \\ $	A-73	584.69	585	1.46				

A-73 484.58 485 1.18

TABLE 4-continued

	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-329	$\begin{array}{c} \text{CH}_{3} \\ \text{N} \\ \text{Chiral} \\ \text{N} \\ \text{N} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \end{array}$	A-73	556.64	557	1.38

A-73 456.52 457 1.12

TABLE 4-continued

TABLE 4-continued									
	Examples E-1-E-349								
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]				
E-331	CH ₃ Chiral N Chiral H ₃ C CH ₃	A-73	556.64	557	1.38				
E-332	ightharpoons NH ₂	A-73	456.52	457	1.14				

TABLE 4-continued

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-334	N N N N N N N N N N	A-77	472.98	473/475	1.19
E-335	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{CI} \\ \text{N} \\ \text{CH}_3 \end{array}$	A-102	535.48	535	1.35
E-336	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{F} \\ \text{O} \\ \text{CH}_3 \end{array}$	A-100	502.57	503	1.28

TABLE 4-continued

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-337	CH ₃ NH ₂ NH ₂ N CI CI CI CH ₃ N CH ₃	A-101	519.02	519	1.32
E-338	CH ₃ NH ₂ NH ₂ N N Cl N Cl N CH ₃	A-77	501.03	501/503	1.28
E-339	V V V V V V V V V V	A-73	484.58	485	1.25

TABLE 4-continued

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-340	H ₃ C Chiral F N CH ₃ CH ₃	A-100	476.53	477	1.36
E-341	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{Chiral} \\ \text{N} \\ \text{CH}_3 \\ \text{E}_{\text{CH}_3} \end{array}$	A-101	492.98	493/495	1.35
E-342	$\begin{array}{c} CH_3 \\ N \\ $	A-77	529	529/531	1.24
E-343	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{Chiral} \\ \text{O} \\ \text{CH}_3 \end{array}$	A-77	474.99	475	1.28

TABLE 4-continued

	TABLE 4-continued				
	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-344	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{Chiral} \\ \text{O} \\ \text{CH}_3 \\ \end{array}$	A-77	474.99	475	1.28
E-345	N N N N N N N N N N	А-73	518.59	519	1.15
E-346	N N N N N N N N N N	A-73	512.55	513	1.20
E-347	N N N N N N N N N N	A-73	458.54	459	1.25

TABLE 4-continued

	Examples E-1-E-349				
Nr.	Structure	Int.	MW	MW [M + H]	tR [min]
E-348	$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{Chiral} \\ \text{N} \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \end{array}$	A-73	458.54	459	1.25
E-349	$\begin{array}{c} CH_{3} \\ N \\ N \\ N \\ N \\ N \\ HO \end{array}$	A-73	502.59	503	1.27

TABLE 5 TABLE 5-continued

E	Biological Data of Examples	C-1 to C-50	35 	Biological Data of Examples C-1 to C-50		
Nr.	IC ₅₀ mTOR [nM]	IC ₅₀ PI3K [nM]		Nr.	IC ₅₀ mTOR [nM]	IC ₅₀ PI3K [nM]
C-01	24	26		C-34	79	37
C-02	24	24	40	C-35	32	29
C-03	11	40	40	C-36	82	308
C-04	8	29		C-37	90	224
C-05	3	50		C-38	24	68
C-06	5	86		C-39	13	380
C-07	30	39		C-40	4	459
C-08	8	65	45	C-41	14	539
C-09	6	254	45	C-42	13	309
C-10	17	401		C-43	32	184
C-11	2	47		C-44	109	188
C-12	5	71		C-45	4	194
C-13	64	99		C-46	31	226
C-14	18	66		C-47	17	541
C-15	20	189	50	C-48	28	596
C-15A	2	57		C-49	31	67
C-16	18	236		C-50	44	72
C-17	69	99	_	C-30	7-7	72
C-18	29	137				
C-19	19	222				
C-20	40	58	55		TABLE	
C-21	44	99			TABLE 6	
C-22	76	30			DI 1 1 1 D 1 0 D 1	D. D
C-23	63	78	_		Biological Data for Example	es D1-D240
C-24	34	59		3.7	TO TOP LAG	TO DISTRIBUTE
C-25	163	64		Nr.	IC ₅₀ mTOR [nM]	IC ₅₀ PI3K [nM]
C-26	57	43	60	D-1	3	78
C-27	20	57		D-1 D-2	30	402
C-28	50	58		D-3	33	574
C-29	34	24		D-3 D-4	1	58
C-30	51	40		D-5	8	225
C-31	22	30		D-6	2	135
C-32	41	32	65	D-7		103
C-33	34	61		D-8	2 2	215

476TABLE 6-continued

	TABLE 6-contin	nued			TABLE 6-contii	nued
	Biological Data for Examples D1-D240				les D1-D240	
Nr.	IC ₅₀ mTOR [nM]	IC ₅₀ PI3K [nM]	5	Nr.	IC ₅₀ mTOR [nM]	IC ₅₀ PI3K [nM]
D-9	33	591	, _	D-86	4	95
D-10	4	206		D-87	7	233
D-11	2	109		D-88	4	118
D-12	3	163		D-89	5	52
D-13	4	312	4.0	D-90	6	62
D-14 D-15	27 3	647 215	10	D-91 D-92	4 7	109 124
D-16	5	192		D-92 D-93	7	266
D-17	7	178		D-94	39	1825
D-18	8	481		D-95	6	145
D-19	9	92		D-96	6	151
D-20	8	116	15	D-97	12	476
D-21 D-22	8 68	270 1269		D-98 D-99	10	199 452
D-23	2	123		D-99 D-100	16 16	347
D-24	9	1017		D-101	2	49
D-25	26	498		D-103	28	470
D-26	7	552	20	D-104	6	125
D-27	5	370	20	D-105	3	46
D-28	0.99	65		D-106	5	249
D-29	1	162		D-107	9	82
D-30 D-31	3 0.88	68 97		D-108 D-110	13 6	313 64
D-31 D-32	0.74	121		D-110 D-111	24	359
D-33	3	181	25	D-112	17	323
D-34	1	36		D-113	13	57
D-35	2	63		D-114	12	188
D-36	0.6	84		D-116	16	129
D-37	3	118		D-117	8	27
D-38 D-39	4 5	366 89	•	D-118	17	404
D-39 D-40	18	89 499	30	D-119 D-120	14 9	55 108
D-41	2	177		D-120 D-121	3	127
D-42	0.84	246		D-122	6	198
D-43	2	436		D-123	17	324
D-44	0.82	27		D-124	7	228
D-45	2	186	35	D-125	4	269
D-46	2	97		D-126	8	142
D-47 D-48	2 3	63 251		D-127 D-128	13 8	344 157
D-48 D-49	2	60		D-128 D-129	10	392
D-50	2	211		D-130	16	384
D-51	1	121		D-131	5	119
D-52	1	134	40	D-132	26	184
D-53	3	213		D-133	2	115
D-54	4	81		D-134	21	333
D-55 D-56	2 2	36 73		D-135 D-136	3	136 228
D-57	3	152		D-138	5 5	101
D-58	2	217	45	D-139	7	374
D-59	1	19		D-140	57	510
D-60	8	546		D-141	3	64
D-61	1	86		D-142	6	94
D-62	3	205		D-143	6	77 59
D-63 D-64	2 2	234 198	50	D-145 D-146	2 4	58 66
D-65	30	436	50	D-140 D-147	3	65
D-66	2	110		D-148	43	420
D-67	2	244		D-149	30	433
D-68	4	42		D-150	20	177
D-69	3	133		D-151	10	467
D-70	5	490	55	D-152	8	164
D-71	1	85		D-153	17	67
D-73 D-74	24 33	324 630		D-154 D-155	22 10	405 209
D-74 D-75	33	335		D-155 D-156	3	53
D-76	13	339		D-157	5	65
D-77	28	303		D-159	7	66
D-78	5	305	60	D-160	29	658
D-79	1	170		D-161	7	
D-80	5	68		D-162	7	
D-81	4	84		D-163	12	
D-82 D-83	4 4	146 219		D-164 D-165	12 12	
D-84	3	127	65	D-166	6	
D-85	7	115		D-167	7	
	*				•	

478 TABLE 7

D-168		TABLE 6-contir	nued		TABLE 7					
D-166		Biological Data for Exampl	es D1-D240		Biological Data for Examples E-1-E-349					
D-168 9	Nr.	IC ₅₀ mTOR [nM]	IC ₅₀ PI3K [nM]	5	Nr.				EC ₅₀ U87MG	
D-170										
D-172								18.19	46.87 45.25	
D-173								14.67	47.13	
D-174									75.29	
D-176				10					49.43	
D-177 33									24.89	
Daily Dail								16.41	131.1	
D-179								0.76	84.01	
Disposition								9.70	48.69	
D-181 32				15					79.82	
D-182 22				13					89.94	
D-185								16.50	85.29	
D-188								16.58	58.69 64.15	
D-186	D-185	16								
D-187 7 20 E-18 5.41 22.82 42.1 D-188 4 4 67 E-19 8.74 90.45 30.32 30. D-189 3 118 E-20 4.5 100.6 55. D-190 8 153 E-21 6.99 374.3 77. D-191 17 81 E-22 56.51 509.7 224. D-193 3 65 25 E-24 6.2 93.52 57. D-194 3 106 E-25 5.9 76.79 57. D-195 4 125 E-26 32.11 497.6 338. D-196 19 202 E-27 1.99 8.828 148. D-197 31 280 E-28 3.94 65.6 229. D-198 3 3 203 8-29 3.14 65.6 229. D-199 15 347 30 E-30 4.22 4.26 4.20 4.20 1.18.6 D-200 46 566 E-32 19.76 176.5 231. D-201 11 134 E-33 31 8.88 467.3 202. D-202 16 4413 E-34 7.85 163.5 174 D-203 1 57 E-35 16.87 67.44 134. D-204 2 69 35 E-36 22.18 405.2 254. D-205 28 3351 351 E-38 2.8 52.89 137. D-206 13 351 E-38 30.8 E-40 4.00.9 513.8 37. D-206 13 351 E-38 30.8 E-44 11.35 232.2 19.9 D-209 11 1 18.8 E-41 6.99 66 77.4 D-209 11 1 18.8 E-41 6.99 66 77.4 D-209 11 1 18.8 E-41 6.99 66 77.4 D-201 1 1 1 158 E-37 9.65 208.8 117. D-205 28 3355 35 E-36 22.18 405.2 254. D-209 11 1 58 40.8 E-44 11.35 232.2 19.9 D-210 7 370 4-64 E-43 14.4 15.2 25.2 19.9 D-211 5 46 6 40 E-43 4.52 501.7 206. D-212 5 79 E-44 11.35 232.2 19.9 D-213 1 8 272 E-45 11.28 14.64 19.2 D-214 1 7									96.53	
D-189 3				20	E-18	5.41			42.04	
D-190								30.32	30.31	
D-191									55.29	
D-192									77.58	
D-193 3									42.97	
D-194 3				25					57.8	
D-196									57.33	
D-197 31 280	D-195		125						338.1	
D-198 3 203 30 E-29 3.14 65.05 69. D-199 15 347 30 E-30 42.96 420.1 186. D-200 46 566 E-31 29.7 432.9 243. D-201 11 134 E-33 18.68 467.3 202. D-203 1										
D-199									69.6	
D-200				30					186.1	
D-201 11 134 E-32 19.86 467.3 202. D-202 16 413 E-33 18.8 467.3 1202. D-203 1 57 E-35 16.87 67.44 134. D-204 2 69 35 E-35 16.87 67.44 134. D-205 28 335 E-37 9.65 208.8 117. D-206 13 351 E-38 2.8 52.89 137. D-207 10 436 E-39 4.57 65.32 75. D-208 8 308 E-40 40.09 513.8 373 D-209 11 158 E-40 40.09 513.8 373 D-209 11 158 E-41 60.99 66 77. D-210 7 370 4 E-42 29.33 658 247.7 D-211 5 46 42 29.33 658 247.7 D-211 5 79 E-44 11.35 232.2 199. D-213 18 272 E-45 10.2 96.86 448 D-214 1 72 E-45 10.2 96.86 448 D-214 1 72 E-46 11.86 104.2 186. D-216 1 59 45 E-49 6.64 74.54 1063 D-216 1 59 45 E-49 6.64 74.54 1063 D-217 4 4 44 45 E-50 8.86 156.9 148. D-219 11 105 E-52 75.07 578.1 D-219 11 105 E-52 75.07 578.1 D-219 11 105 E-52 75.07 578.1 D-220 7 64 E-53 51.12 460.3 794. D-212 7 63 E-54 7.24 165 514. D-221 7 64 E-53 35.11 48.4 D-222 10 42 50 E-55 61.95 148.4 D-221 7 63 E-54 7.24 165 514. D-222 10 48 E-59 33.19 294.4 481 D-224 12 39 E-57 20.94 279.5 20.1 D-225 16 66 E-58 50.49 253.2 449. D-226 10 48 E-59 33.19 294.4 481 D-227 17 47 E-60 6.43 69.38 124. D-229 12 65 E-60 4.95 518.8 342.9 352. D-230 15 37 E-63 32.4 34.9 294.4 481 D-227 17 47 E-60 6.43 69.38 124. D-229 12 66 E-69 4.95 518.8 118.4 225.5 D-231 22 46 E-64 21.85 118.4 225.5 D-233 17 45 E-66 E-67 15.89 30.52 32.96 D-234 8 156 6 E-66 5.37 5 661.6 715.3									243.6	
D-202 16 413 E-34 7.85 163.5 174 D-203 1 57 E-35 16.87 67.44 134. D-204 2 69 3 E-36 22.18 405.2 254. D-205 28 335 35 E-37 9.65 208.8 117. D-206 13 351 E-38 2.8 52.89 137. D-207 10 436 E-39 4.57 65.32 75. D-208 8 308 E-40 40.09 513.8 373 D-209 11 158 E-41 6.99 66 77. D-210 7 370 E-42 29.33 658 247. D-211 5 46 40 E-43 4.52 501.7 206. D-212 5 79 E-44 11.35 232.2 199. D-213 18 272 E-45 10.2 96.86 448. D-214 1 72 E-46 11.86 104.2 186. D-215 2 227 E-46 11.86 104.2 186. D-216 1 59 E-47 12.48 146.4 192. D-216 1 59 E-48 6.34 100.3 159. D-216 1 59 E-48 6.34 100.3 159. D-218 5 80 E-51 88.48 205.4 D-218 5 80 E-51 88.48 205.4 D-219 11 105 E-52 75.07 578.1 D-220 7 64 E-53 51.12 460.3 794. D-212 7 63 E-52 75.07 578.1 D-220 7 64 E-53 51.12 460.3 794. D-212 7 63 E-52 75.07 578.1 D-220 7 64 E-53 51.12 460.3 794. D-212 7 63 E-52 75.07 578.1 D-220 7 64 E-53 51.12 460.3 794. D-212 7 63 E-54 7.24 165 514. D-213 13 77 E-56 3.37.6 357 451. D-224 12 39 E-57 20.94 279.5 201. D-225 16 66 E-58 50.49 233.9 244.9 481. D-218 5 E-60 64.8 6.9 33.9 24.4 489. D-219 12 17 47 E-66 64.8 6.9 33.9 294.4 489. D-223 13 77 47 E-66 64.8 6.9 33.9 294.4 489. D-224 12 39 E-57 20.94 279.5 201. D-255 16 66 E-58 50.49 253.2 449. D-225 16 66 E-68 E-59 33.19 294.4 489. D-226 10 48 E-59 33.19 294.4 489. D-227 17 47 E-66 64.8 10.2 7.2 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1									231.5	
D-203										
D-204		1								
D-206	D-204		69	35					254.8	
D-207 10 436 E-39 4.57 65.32 75. D-208 8 308 E-40 40.09 513.8 373 D-209 11 158 E-41 6.99 66 77. D-210 7 370 E-42 29.33 658 247. D-211 5 46 46 E-43 4.52 501.7 26. D-212 5 79 E-44 11.35 232.2 199. D-213 18 272 E-45 10.2 96.86 448 D-214 1 72 E-46 11.86 104.2 186. D-214 1 72 E-46 11.86 104.2 186. D-215 2 227 E-47 12.48 146.4 192. D-216 1 59 45 E-49 6.64 74.54 106.3 D-217 4 44 44 E-50 8.86 156.9 148. D-218 5 80 E-51 8.848 205.4 D-219 11 105 E-52 75.07 578.1 D-220 7 64 E-53 51.12 460.3 794. D-221 7 63 E-54 7.24 165 514. D-222 10 42 50 E-55 61.95 148.4 D-223 13 77 E-56 33.76 357 451. D-224 12 39 E-57 20.94 279.5 201. D-225 16 66 E-58 50.49 253.2 449. D-226 10 48 E-59 33.19 294.4 481 D-227 17 47 E-60 6.43 69.38 124. D-228 8 52 55 E-61 4.84 102.7 243. D-229 12 65 E-63 33.79 294.4 481 D-220 15 46 66 E-58 50.49 253.2 449. D-221 2 65 E-66 33.76 357 451. D-222 10 24 88 E-59 33.19 294.4 481 D-227 17 47 E-60 6.43 69.38 124. D-228 8 52 55 E-61 4.84 102.7 243. D-229 12 65 E-66 33.76 357 451. D-220 15 37 E-66 6.43 69.38 124. D-221 17 47 E-60 6.43 69.38 124. D-222 10 24 8 E-59 33.19 294.4 481 D-223 13 37 E-66 6.43 69.38 124. D-224 12 39 E-57 20.94 279.5 201. D-225 16 66 E-68 6.82 411.5 151 D-233 17 45 E-67 15.89 3052 3296 D-234 8 156 60 E-68 6.82 411.5 151 D-235 17 226 E-69 4.95 415.3 531.				33					117.2	
D-208 8 308 E-40 40.09 513.8 373 D-209 11 158 E-41 6.99 66 77. D-210 7 370 E-42 29.33 658 247. D-211 5 46 46 E-43 4.52 501.7 206. D-212 5 79 E-44 11.35 232.2 199. D-213 18 272 E-45 10.2 96.86 448 D-214 1 72 E-46 11.86 104.2 186. D-215 2 227 E-47 12.48 146.4 192. D-216 1 59 45 E-49 6.64 74.54 100.3 159. D-217 4 4 44 E-50 8.86 156.9 148. D-218 5 80 E-51 88.48 205.4 D-219 11 105 E-52 75.07 578.1 D-220 7 64 E-53 51.12 460.3 794. D-221 7 63 E-54 7.24 165 514. D-221 7 63 E-54 7.24 165 514. D-222 10 42 50 E-55 61.95 148.4 D-223 13 77 E-56 33.76 357 451. D-224 12 39 E-57 20.94 279.5 201. D-225 16 66 66 E-58 50.49 253.2 449. D-227 17 47 E-60 6.43 69.38 124. D-228 8 52 55 E-61 4.84 102.7 243. D-229 12 66 E-68 5.44 102.7 243. D-220 15 37 E-64 21.85 118.4 225. D-231 22 46 E-66 53.75 661.6 715. D-233 17 45 E-66 53.75 661.6 715. D-234 8 156 60 E-68 6.82 411.5 151 D-235 17 226 E-69 4.95 415.3 531.									137.2	
D-209 11 158 E-41 6.99 66 77: D-210 7 370 40 E-42 29.33 658 247. D-211 5 46 46 E-43 4.52 501.7 206. D-212 5 79 E-44 11.35 232.2 199. D-213 18 272 E-45 10.2 96.86 448 D-214 1 72 E-45 11.86 104.2 186. D-215 2 227 E-47 12.48 146.4 19.2. D-216 1 59 45 E-49 6.64 74.54 100.3 159. D-217 4 4 44 E-50 8.86 156.9 148. D-218 5 80 E-51 88.48 205.4 D-219 11 105 E-52 75.07 578.1 D-220 7 64 E-53 51.12 460.3 794. D-221 7 63 E-54 7.24 165 514. D-222 10 42 50 E-55 61.95 148.4 D-223 13 77 E-56 33.76 357 451. D-224 12 39 E-57 20.94 279.5 201. D-225 16 66 E-58 50.49 253.2 449. D-226 10 48 E-59 33.19 294.4 481 D-227 17 47 E-60 6.43 69.38 124. D-228 8 52 55 E-61 4.84 102.7 243. D-229 12 65 E-66 6.43 69.38 124. D-229 12 66 E-66 6.43 69.38 124. D-229 12 66 E-66 6.3 3.24 342.9 352. D-231 22 46 E-66 53.75 661.6 715. D-233 17 45 E-66 32.4 342.9 352. D-231 22 46 E-66 53.75 661.6 715. D-233 17 45 E-66 515.76 88 444. D-233 17 45 E-66 53.75 661.6 715. D-234 8 156 60 E-68 6.82 411.5 151 D-235 17 226 E-66 4.95 495 415.3 531.									75.62	
D-210 7 370 40 E-42 29.33 658 247. D-211 5 46 40 E-43 4.52 501.7 206. D-212 5 79 E-44 11.35 232.2 199. D-213 18 272 E-45 10.2 96.86 448 D-214 1 72 E-46 11.86 104.2 186. D-215 2 227 E-47 12.48 146.4 192. D-216 1 59 45 E-49 6.64 74.54 1063 D-217 4 44 44 E-50 8.86 156.9 148. D-218 5 80 E-51 88.48 205.4 D-219 11 105 E-52 75.07 578.1 D-220 7 64 E-53 51.12 460.3 794. D-221 7 63 E-54 7.24 165 514. D-222 10 42 50 E-55 61.95 148.4 D-223 13 77 E-56 33.76 357 451. D-224 12 39 E-57 20.94 279.5 201. D-225 16 666 E-58 50.49 233.2 449. D-226 10 48 E-59 33.19 294.4 481 D-227 17 47 E-60 643 69.38 124. D-228 8 52 55 E-61 4.84 10.2 294.4 481 D-227 17 47 E-60 643 69.38 124. D-228 8 52 55 E-61 4.84 10.2 294.4 481 D-227 17 47 E-60 643 69.38 124. D-228 18 52 55 E-61 4.84 10.2 294.4 481 D-227 17 47 E-60 643 69.38 124. D-228 18 52 55 E-61 4.84 10.2 294.4 481 D-227 17 47 E-60 643 69.38 124. D-228 18 52 55 E-61 4.84 10.2 294.4 481 D-227 17 47 E-60 643 69.38 124. D-228 18 52 55 E-61 4.84 10.2 294.4 481 D-227 17 47 E-60 643 69.38 124. D-228 18 52 55 E-61 4.84 10.2 294.4 481 D-227 17 47 E-60 643 69.38 124. D-228 18 52 55 E-61 4.84 10.2 294.4 481 D-227 17 47 E-60 643 69.38 124. D-233 17 45 E-60 643 69.38 3052 3296 D-231 22 46 E-66 53.75 661.6 715. D-232 19 38 E-66 53.75 661.6 715. D-233 17 45 E-66 53.75 661.6 715. D-234 8 156 60 E-68 682 411.5 151 D-235 17 226 E-69 4.95 415.3 531.									77.98	
D-211				40					247.8	
D-213 18 272 E-45 10.2 96.86 448 D-214 1 72 E-46 11.86 104.2 186. D-215 2 227 E-47 12.48 146.4 192 D-216 1 59 45 E-49 6.64 74.54 1063 D-217 4 44 44 E-50 8.86 156.9 148. D-218 5 80 E-51 88.48 205.4 D-219 11 105 E-52 75.07 578.1 D-220 7 64 E-53 51.12 460.3 794. D-221 7 63 E-54 7.24 165 514. D-222 10 42 50 E-55 61.95 148.4 D-223 13 77 E-56 33.76 357 451. D-224 12 39 E-57 20.94 279.5 201. D-225 16 66 E-58 50.49 253.2 449. D-226 10 48 E-59 33.19 294.4 481 D-227 17 47 E-60 6.43 69.38 124. D-228 8 55 5 E-61 4.84 102.7 243 D-229 12 65 E-62 19.5 246.1 268. D-230 15 37 E-63 32.4 342.9 352. D-231 22 46 E-66 53.75 661.6 715. D-232 9 38 E-65 15.76 88 444. D-233 17 45 E-66 53.75 661.6 715. D-234 8 156 66 E-65 15.76 88 444. D-235 17 45 E-66 53.75 661.6 715. D-230 15 37 E-63 32.4 342.9 352. D-231 22 46 E-66 53.75 661.6 715. D-233 17 45 E-66 53.75 661.6 715. D-234 8 156 66 E-68 6.82 411.5 151 D-235 17 226 E-69 4.95 415.3 531.				40					206.6	
D-214 1 72 E-46 11.86 104.2 186. D-215 2 227 E-47 12.48 146.4 192. D-216 1 59 45 E-49 6.64 74.54 1063 D-217 4 4 44 E-50 8.86 156.9 148. D-218 5 80 E-51 88.48 205.4 D-219 11 105 E-52 75.07 578.1 D-220 7 64 E-53 51.12 460.3 794. D-221 7 63 E-54 7.24 165 514. D-222 10 42 50 E-55 61.95 148.4 D-223 13 77 E-56 33.76 357 451. D-224 12 39 E-57 20.94 279.5 201. D-225 16 66 E-58 50.49 253.2 449. D-226 10 48 E-59 33.19 294.4 481 D-227 17 47 E-60 643 69.38 124. D-228 8 55 5 E-61 4.84 102.7 243. D-229 12 65 E-62 19.5 246.1 268. D-230 15 37 E-64 21.85 118.4 225. D-231 22 46 E-69 19.5 246.1 268. D-233 17 45 E-66 53.75 661.6 715. D-234 8 156 60 E-67 15.89 3052 3296 D-235 17 456 E-68 6.82 411.5 151 D-235 17 226 E-69 4.95 415.3 531.	D-212		79							
D-214 1 1 7/2 E-47 12.48 146.4 192 D-215 2 227 E-48 6.34 100.3 159 D-216 1 59 45 E-49 6.64 74.54 1063 D-217 4 4 44 E-50 8.86 156.9 148 D-218 5 80 E-51 88.48 205.4 D-219 11 105 E-52 75.07 578.1 D-220 7 64 E-53 51.12 460.3 794 D-221 7 63 E-54 7.24 165 514 D-222 10 42 50 E-55 61.95 148.4 D-223 13 77 E-56 33.76 357 451 D-224 12 39 E-57 20.94 279.5 201 D-225 16 66 E-58 50.49 253.2 449 D-226 10 48 E-59 33.19 294.4 481 D-227 17 47 E-60 6.43 69.38 124 D-228 8 5 52 55 E-61 4.84 102.7 243 D-229 12 665 E-62 19.5 246.1 268 D-230 15 37 E-63 32.4 342.9 352 D-231 22 46 E-66 53.75 88 444 D-232 9 38 E-67 15.89 3052 3296 D-233 17 45 E-66 53.75 661.6 715 D-234 8 156 60 E-66 53.75 661.6 715 D-235 17 226 E-69 4.95 415.3 531										
D-216									192.2	
D-217						6.34			159.6	
D-218 5 80 E-51 88.48 205.4 D-219 11 105 E-52 75.07 578.1 D-220 7 64 E-53 51.12 460.3 794. D-221 7 63 E-54 7.24 165 514. D-222 10 42 50 E-55 61.95 148.4 D-223 13 77 E-56 33.76 357 451. D-224 12 39 E-57 20.94 279.5 201. D-225 16 66 E-58 50.49 253.2 449. D-226 10 48 E-59 33.19 294.4 481 D-227 17 47 E-60 6.43 69.38 124. D-228 8 52 55 E-61 4.84 102.7 243. D-229 12 65 E-62 19.5 246.1 268. D-230 15 37 E-63 32.4 342.9 352. D-231 22 46 E-63 32.4 342.9 352. D-231 22 46 E-64 21.85 118.4 225. D-232 9 38 E-66 53.75 661.6 715. D-233 17 45 E-66 53.75 661.6 715. D-234 8 156 60 E-68 6.82 411.5 151 D-235 17 226 E-69 4.95 415.3 531.				45						
D-219 11 105 E-52 75.07 578.1 D-220 7 64 E-53 51.12 460.3 794.1 D-221 7 63 E-54 7.24 165 514.1 D-222 10 42 50 E-55 61.95 148.4 D-223 13 77 E-56 33.76 357 451.1 D-224 12 39 E-57 20.94 279.5 201.1 D-225 16 66 E-58 50.49 253.2 449.1 D-226 10 48 E-59 33.19 294.4 481 D-227 17 47 E-60 643 69.38 124.1 D-228 8 52 55 E-61 4.84 102.7 243.1 D-229 12 65 E-62 19.5 246.1 268.1 D-230 15 37 E-63 32.4 342.9 352.1 D-230 15 37 E-64 21.85 118.4 225.1 D-231 22 46 E-65 15.76 88 444.1 D-232 9 38 E-67 15.89 30.52 32.96 D-234 8 156 60 E-68 6.82 411.5 151 D-235 17 226 E-69 4.95 415.3 531									148.6	
D-220 7 64 E-53 51.12 460.3 794. D-221 7 63 E-54 7.24 165 514. D-222 10 42 50 E-55 61.95 148.4 D-223 13 77 E-56 33.76 357 451. D-224 12 39 E-57 20.94 279.5 201. D-225 16 66 E-58 50.49 253.2 449. D-226 10 48 E-59 33.19 294.4 481 D-227 17 47 E-60 6.43 69.38 124. D-228 8 52 55 E-61 4.84 102.7 243. D-229 12 65 E-62 19.5 246.1 268. D-230 15 37 E-63 32.4 342.9 352. D-231 22 46 E-63 32.4 342.9 352. D-231 22 46 E-63 15.76 88 444. D-232 9 38 E-66 53.75 661.6 715. D-233 17 45 E-66 53.75 661.6 715. D-234 8 156 60 E-68 6.82 411.5 151 D-235 17 226 E-69 4.95 415.3 531.										
D-222 10 42 50 E-55 61.95 148.4 D-223 13 77 E-56 33.76 357 451. D-224 12 39 E-57 20.94 279.5 201. D-225 16 66 E-58 50.49 253.2 449. D-226 10 48 E-59 33.19 294.4 481 D-227 17 47 E-60 6.43 69.38 124. D-228 8 52 55 E-61 4.84 102.7 243. D-229 12 65 E-62 19.5 246.1 268. D-230 15 37 E-63 32.4 342.9 352. D-231 22 46 E-63 13.24 342.9 352. D-231 22 46 E-63 15.76 88 444. D-232 9 38 E-66 53.75 661.6 715. D-233 17 45 E-67 15.89 3052 3296 D-234 8 156 60 E-68 6.82 411.5 151 D-235 17 226 E-69 4.95 415.3 531.									794.7	
D-223 13 77 E-56 33.76 357 451. D-224 12 39 E-57 20.94 279.5 201. D-225 16 66 E-58 50.49 253.2 449. D-226 10 48 E-59 33.19 294.4 481 D-227 17 47 E-60 6.43 69.38 124. D-228 8 52 55 E-61 4.84 102.7 243. D-229 12 65 E-62 19.5 246.1 268. D-230 15 37 E-63 32.4 342.9 352. D-231 22 46 E-63 15.76 88 444. D-232 9 38 E-66 53.75 661.6 715. D-233 17 45 E-67 15.89 3052 3296 D-234 8 156 60 E-68 6.82 <									514.6	
D-224 12 39 E-57 20.94 279.5 201 D-225 16 66 E-58 50.49 253.2 449 D-226 10 48 E-59 33.19 294.4 481 D-227 17 47 E-60 6.43 69.38 124 D-228 8 52 55 E-61 4.84 102.7 243 D-229 12 65 E-62 19.5 246.1 268 D-230 15 37 E-63 32.4 342.9 352 D-231 22 46 E-63 32.4 342.9 352 D-232 9 38 E-64 21.85 118.4 225 D-232 9 38 E-65 15.76 88 444 D-232 9 38 E-66 53.75 661.6 715 D-233 17 45 E-66 53.75 661.6 715 D-234 8 156 60 E-68 6.82 411.5 151 D-235 17 226 E-69 4.95 415.3 531				50					451.6	
D-225 16 66 E-58 50.49 253.2 449.0 D-226 10 48 E-59 33.19 294.4 481 D-227 17 47 E-60 6.43 69.38 124. D-228 8 52 55 E-61 4.84 102.7 243. D-229 12 65 E-62 19.5 246.1 268. D-230 15 37 E-63 32.4 342.9 352. D-231 22 46 E-64 21.85 118.4 225. D-232 9 38 E-66 53.75 661.6 715. D-233 17 45 E-67 15.89 3052 3296 D-234 8 156 60 E-68 6.82 411.5 151 D-235 17 226 E-69 4.95 415.3 531.										
D-226 10 48 E-59 33.19 294.4 481 D-227 17 47 E-60 643 69.38 124. D-228 8 52 55 E-61 4.84 102.7 243. D-229 12 65 E-62 19.5 246.1 268. D-230 15 37 E-63 32.4 342.9 352. D-231 22 46 E-64 21.85 118.4 225. D-232 9 38 E-66 53.75 661.6 715. D-233 17 45 E-66 53.75 661.6 715. D-234 8 156 60 E-68 6.82 411.5 151 D-235 17 226 E-69 4.95 415.3 531.									449.6	
D-227 17 47 E-60 6.43 69.38 124. D-228 8 52 55 E-61 4.84 102.7 243. D-229 12 65 E-62 19.5 246.1 268. D-230 15 37 E-63 32.4 342.9 352. D-231 22 46 E-64 21.85 118.4 225. D-232 9 38 E-66 53.75 88 444. D-232 9 38 E-66 53.75 661.6 715. D-233 17 45 E-67 15.89 3052 3296 D-234 8 156 60 E-68 6.82 411.5 151 D-235 17 226 E-69 4.95 415.3 531.										
D-229 12 65 E-62 19.5 246.1 268. D-230 15 37 E-63 32.4 342.9 352.5 D-231 22 46 E-64 21.85 118.4 225.5 D-232 9 38 E-66 53.75 661.6 715.5 D-233 17 45 E-66 53.75 661.6 715.5 D-234 8 156 60 E-68 6.82 411.5 151 D-235 17 226 E-69 4.95 415.3 531.5									124.3	
D-230 15 37 E-63 32.4 342.9 352.2 D-231 22 46 E-64 21.85 118.4 225.1 D-232 9 38 E-66 53.75 661.6 715.2 D-233 17 45 E-67 15.89 3052 3296 D-234 8 156 60 E-68 6.82 411.5 151 D-235 17 226 E-69 4.95 415.3 531.2	D-228	8	52	55					243.5	
D-231 22 46 E-64 21.85 118.4 225. D-231 22 46 E-65 15.76 88 444. D-232 9 38 E-66 53.75 661.6 715. D-233 17 45 E-67 15.89 3052 3296 D-234 8 156 60 E-68 6.82 411.5 151 D-235 17 226 E-69 4.95 415.3 531.										
D-231 22 46 E-65 15.76 88 444. D-232 9 38 E-66 53.75 661.6 715. D-233 17 45 E-67 15.89 3052 3296 D-234 8 156 60 E-68 6.82 411.5 151 D-235 17 226 E-69 4.95 415.3 531.									225.6	
D-232 9 38 E-66 53.75 661.6 715 D-233 17 45 E-67 15.89 3052 3296 D-234 8 156 60 E-68 6.82 411.5 151 D-235 17 226 E-69 4.95 415.3 531									444.4	
D-234 8 156 60 E-68 6.82 411.5 151 D-235 17 226 E-69 4.95 415.3 531.						53.75	661.6		715.5	
D-235 17 226 E-69 4.95 415.3 531.				60						
D 446				00						
D-236 8 269 E-70 1.18 136.6 28.55 74.	D-236	8	269					28.55	74.86	
D-237 18 161 E-71 1.09 99.86 35	D-237	18	161					_ 2.00	35.36	
									102.1	
				65					242.9	
D-240 24 214 65 E-74 0.27 53.88 102 E-75 12.36 274.8 299.	D-240		214						102 299.4	

479
TABLE 7-continued

480
TABLE 7-continued

	TABLE /-continued									
	Biological Data for Examples E-1-E-349					Biological Data for Examples E-1-E-349				
Nr.	IC ₅₀ mTOR [nM]	IC ₅₀ PI3K [nM]	EC ₅₀ BT474 [nM]	EC ₅₀ U87MG [nM]	5	Nr.	IC ₅₀ mTOR [nM]	IC ₅₀ PI3K [nM]	EC ₅₀ BT474 [nM]	EC ₅₀ U87MG [nM]
E-76	1.78	232.8		100.2		E-156	0.51	18.28	12.09	
E-77	2.87	129.2		115.6		E-157	0.59	37.51	18.28	
E-78	3.38	232		167.2		E-158	2.22	122.3	22.58	
E-79	1.37	49.97		77.94		E-159	0.53	25.82	19.68	
E-80	2.64	48.19		112.8	10	E-160	1.88	114.7	114	
E-81	0.36	39.47		34.32		E-161	13.63	924.7	236.6	
E-82 E-83	3.59 6	81.71 465.5		107.8 64.41		E-162 E-163	10.4 1.71	539.9 50.82	208.4	
E-84	3.8	113.4		68.43		E-163	2.22	154.2	22.17	
E-85	4.4	56.4		280.3		E-165	1.47	178.3	18.59	
E-86	1.52	147		90.18	15	E-166	2.49	153.8	28.84	
E-87	3.64	78.85		146.9	13	E-167	21.06	156.8		
E-88	1.57	84.39		47.65		E-168	66.44	373.2		
E-89	4.84	307		222		E-169	6.8	69.98		
E-90	2.69	52.47		164.9		E-170	1.56	96.52	25.69	
E-91 E-92	3.43	178.6 59.45		132.4		E-171	23.12	358.1	22.11	
E-92 E-93	2.79 1.82	39. 4 3 106.9		122.6 152	20	E-172 E-173	2.11 8.6	268.3 163.9	32.11 39.71	
E-93 E-94	2.42	145.6		119.3		E-173	18.75	164.7	141.5	
E-95	12.84	173.1		267.4		E-175	17.16	163.3	575.9	
E-96	10.41	199.8		124.8		E-176	39.16	490.6		
E-97	14.54	366.8		289.8		E-177	4.63	337.4	57.04	
E-98	1.41	160.2		121.1		E-178	5.19	335	47.1	
E-99	11.05	190.5		270.3	25	E-179	3.11	275.9	28.72	
E-101	1.78	114.6		81.85		E-180	5.43	357.4	67.05	
E-102	7.8	289.2		108.8		E-181	8.83	275.3	93.82	
E-103 E-104	11.54	232.1		209.8		E-182 E-183	2.44	246.7	54.51	
E-104 E-105	3.23 2.87	71.94 51.68		104.3 144.6		E-183 E-184	4.7 2.81	308.1 399.4	104.2 39.78	
E-105	0.92	36.82		44.26	30	E-185	3.43	201.5	25.91	
E-107	2.48	62.89		117	30	E-186	0.68	325.3	22.36	
E-108	2.68	71.52		143.1		E-187	1.93	161.5	29.84	
E-109	9.66	259		82.8		E-188	4.69	355.6	77.53	
E-110	3.5	82.31		140.6		E-189	1.6	186.4	44.78	
E-111	5.98	31.84		266.8		E-190	19.97	175.4	82.41	
E-112	15.32	248.6		336.2	35	E-191	5.16	141.5	45.04	
E-113	4.51	413.5		356.4		E-192	2.86	333.7	52.68	
E-114 E-115	1.23 1.83	90.69 153.6		47.43 152.9		E-193 E-194	276.6 0.87	183.8 129.3	25.06	
E-115 E-116	6.82	110		18.58		E-194 E-195	1.99	20.33	25.00	
E-117	11.03	73.48		26.69		E-196	5.28	234.7	45.59	
E-118	5.09	67.85		30.89		E-197	3.78	122.8	16.37	
E-119	10.94	281.1		44.96	40	E-198	1.4	90.89	9.84	
E-120	73.02	349.3				E-199	1.34	74.6	9.81	
E-121	3.43	63.89		53.62		E-200	1.11	58.79	9.82	
E-122	5.86	62.81		55.69		E-201	1.62	98.1	9.77	
E-123 E-124	6.62 8.91	46.61 53.3		114.5 141		E-202 E-203	2.27 3.29	85.82 95.16	14.19 14.93	
E-124 E-125	28.7	160.8		101.2	45	E-203 E-204	3.92	138.2	54.62	
E-126	24.16	194.7		88.96	10	E-205	0.59	48.89	20.15	
E-127	11.91	158.3		67.76		E-206	1.38	71.77	12.14	
E-128	13.88	37.16		55.15		E-207	2.51	581.2	58.69	
E-129	27.44	237.1		86.45		E-208	2.87	175.6	40.36	
E-130	14.3	69.07		33.32		E-209	5.71	545.6	80.73	
E-131	17.09	158.3		82.7	50	E-210	2.84	388.1	59.39	
E-132	9.55	45.55		69.67		E-211	3.58	472.3	96.74	
E-133	6.85	77.85		43.11		E-212	2.3	645 465 1	72.36 55.13	
E-134 E-135	4.16 16.74	44.88 149.1		34.75 59.12		E-213 E-214	1.51 3.49	465.1 599.9	55.13 84.08	
E-139	3.15	160.2		74.2		E-214 E-215	1.96	423.3	48	
E-140	0.99	198.5	13.72	39.16		E-216	2.14	465.9	38.33	
E-141	1.69	259.8	_	33.14	55	E-217	7.56	326.6	47.96	
E-142	1.5	107.4	16.14	18.79		E-218	4.69	361.8	57.39	
E-143	1.15	126.7	22.39			E-219	3.2	163	37.33	
E-144	2.98	169.2	17.58			E-220	4.33	292.6	33.86	
E-145	5.45	358.3	48.31			E-221	2.21	212.8	33.7	
E-146	0.73	45.78 55.7	11.91		60	E-222	21.17	530.1	CCAA	
E-147 E-148	0.54 1.36	55.7 70.64	13.79 33.5		20	E-223 E-224	9.33 55.47	157 401.8	66.44	
E-148 E-149	0.89	85.79	32.81			E-224 E-225	33.47 14.07	223.7		
E-149 E-150	1.75	120.1	20.22			E-223 E-226	14.41	195.6		
E-152	0.88	67.85	17.75			E-227	13.28	267.2		
E-153	0.89	212.7	14.25			E-228	27.93	356.5		
E-154	0.7	30.2	18.68		65	E-229	8.85	173.8	48.64	

482 TABLE 7-continued

	Biologica	ll Data for Exa	mples E-1-E-349			Biological Data for Examples E-1-E-349				
Nr.	IC ₅₀ mTOR [nM]	IC ₅₀ PI3K [nM]	EC ₅₀ BT474 [nM]	EC ₅₀ U87MG [nM]	5	Nr.	IC ₅₀ mTOR [nM]	IC ₅₀ PI3K [nM]	EC ₅₀ BT474 [nM]	EC ₅₀ U87MG [nM]
E-231	13.62	184.7				E-308	0.32	63.43		
E-232	11.52	142.4				E-309	0.56	239.33		
E-233	1	89.79	23.04			E-310	0.76	86.05		
E-234 E-235	0.67 1.24	263.2 178.2	21.66 19.16		10	E-311 E-312	0.52 0.39	69.07 110.31		
E-235 E-236	0.64	141.3	18.75		10	E-312 E-313	0.92	121.81		
E-237	0.96	120.7	20.61			E-314	1.68	76.12		
E-238	0.07	174.6	19.07			E-315	1.5	126.66		
E-239	0.26	46.18	15.16			E-316	1.29	57.12		
E-240	0.29	115.4	16.84			E-317	2.23	92.8		
E-241	0.25	91.52	16.6		15	E-318	1.28	107.46		
E-242 E-243	0.2 0.73	120.1 109.7	18.37 29.82			E-319 E-320	9.74 5.95	359.57		
E-245	0.47	288.2	21.05			E-320 E-321	8.92	1301.49 412.25		
E-246	1.13	81.31	61.41			E-322	6.48	390.88		
E-247	0.8	95.37	19.59			E-323	9.67	841.74		
E-248	1.18	50.79	56.1		20	E-324	13.61	935.07		
E-249	1.75	60.47	22.83		20	E-325	67.77	1175.43		
E-250	4.36	92.16	37.88			E-326	11.42	367.08		
E-251 E-252	7.99	90.72 48.24	588.1 15.22			E-327 E-328	7.08 25.52	1356.31 585.88		
E-252 E-253	0.57 1.47	30.6	64.56			E-328 E-329	4.43	237.84		
E-254	0.97	31.55	16.6			E-330	32.58	600.97		
E-255	0.46	4.83	43.05		25	E-331	5	150.52		
E-256	0.67	22.96	27.94			E-332	26.53	655.45		
E-257	2.7	58.26	43.95			E-333	9.74	599.13		
E-258	1.55	110.2	13.1			E-334	6.07	966		
E-259	1.61	209.2	13.93			E-335	10.6	2212.26		
E-260	0.81	63.84	22.95		20	E-336 E-337	5.21 10.07	773.45 862.37		
E-261	1.46	44.34	11.44		30	E-338	4.85	634.33		
E-262	1.63	133.7	18.79			E-339	7.04	330.81		
E-263	2.09	204.4	22.85			E-340	5.86	364.04		
E-264	1.39	61.64	32.3			E-341	4.36	281.99		
E-265 E-266	1.64	205.6 560.2	24.34			E-342	0.66	137.31		
E-267	11.46 9.26	420.9	273.2 168.9		35	E-343	5.62	148.58		
E-268	10.44	242.1	437.7			E-344 E-345	2.84 1.15	149.4 109.07		
E-269	15.21	251.8	59.7			E-346	0.45	167.33		
E-270	13.23	328.4	213			E-347	3.42	205.14		
E-271	2.75	113.1	10.3			E-348	5.46	143.82		
E-272	24.53	475.3	107		40	E-349	1.03	175.45		
E-273	4.24	119.3	14.14		40					
E-274	39.77	444.9				A14.	1 N C - 41 1 1			
E-275	3.07	140.8	15.5			•	cal Method 1			
E-280	16.96	153.4	36.65			HPLC: .	Agilent 1100	Series		
E-281	144.8	679				MS: Ag	ilent LC/MSI) SL		
E-282	3.83	173.4	8.61		45		Phenomenex		Gemini C18.	3 um. 2.0×20
E-283	40.26	446.5	77.02			mm,	1 Hemomene	, 1,101001	oumm ere,	5 paris, 2.07.2
E-284	8.45	180.8	77.83				NT- 00N f 442	o Do CE		
E-285 E-286	13.91 6.76	646.9 526.7	12.42 29.35				No. 00M-443			
E-287	9.81	288.4	523			solvent.	A: 5 mM NH ₂	₄HCO₃/20 1	nM NH ₃	
E-288	3.8	342.9	115.5		50	B: ac	etonitrile HPI	.C grade		
E-289	5.54	297.9	71.42		50		n: MS: Positi	-	tive	
E-290	1.51	200.4	14.86					_	itive	
E-291	2.7	219.8	18.17				rang: 120-700	J m/z		
E-292	1.26	212	20.26			fragn	nentor: 70			
E-293	1.53	168.1	31.3			gain l	EMV: 1			
E-294	0.68	137.2	11.15		55	-	nold: 0.25			
E-295	1.09	109.4	15.1							
E-296	1.56	121.5	18.51				315 nm			
E-297	0.21	208.16				bandy	width: 170 nm	1		
E-298	0.56	187				refere	ence: off			
E-299	0.58	159.65			60					
E-300 E-301	0.49	783.3			60	_	: 210-400 nm			
E-301 E-302	0.28	106.03				range	step: 2.00 nn	ı		
E-302 E-303	1.66 2.11	112.89 144.41					width: <0.01 r			
E-303 E-304	1.26	108.17				slit: 2				
E-304 E-305	0.68	110.06								
E-306	1.01	108.46			65	injection				
						flow: 1	00 mL/min			
E-307	0.45	192.99				110 W . 1 .				

gradient: 0.00 min 5% B 0.00-2.50 min 5%→95% B 2.50-2.80 min 95 B 2.81-3.10 min 95%→5% B

Analytical Method 2

Instrument: Agilent 1100-SL: incl. ELSD/DAD/MSD

Chromatography:

Column: Phenomenex Gemini® C18, 50×2.0 mm, 3μ

Method "Acid"

Eluent A: 0.1% formic acid in acetonitrile Eluent B: 0.1% formic acid in Water

Linear Gradient program: $t_0=2\%$ A, $t_{3.5min}=98\%$ A,

t_{6min}=98% A

Flow: 1 mL/min

Column oven temperature: 35° C.

Method "Base"

Eluent A: 10 mM ammonia in acetonitrile Eluent B: 10 mM ammonia in water

Linear Gradient program: $t_0=2\%$ A, $t_{3.5min}=98\%$ A,

t_{6min}=98% A

Flow: 1 mL/min

Column oven temperature: 35° C.

Evaporative Light Scattering Detector (ELSD): Instrument: Polymer Laboratories PL-ELS 2100

Nebuliser gas flow: 1.1 L/min N₂

Nebuliser gas flow: 1.1 L/min N₂
Nebuliser temp: 50° C.
Evaporation temp: 80° C.
Lamp: Blue LED 480 nm
Diode Array Detector (DAD):
Instrument: Agilent G1316A
Sample wavelength: 220-320 nm
Reference wavelength: Off

Instrument: Agilent LC/MSD-SL Ionisation: ESI (Positive & Negative)

Mass range: 100-800

Mass Spectroscopy (MSD):

484

The Examples that follow describe the biological activity of the compounds according to the invention without restricting the invention to these Examples. All the EC_{50} and IC_{50} values listed herein are indicated in nM (nanomoles).

mTOR Kinase Activity Assay

(Phosphorylation Status of mTOR Substrate 4E-BP1; TR-FRET)

mTOR assay described herein provides IC50 values indicating the activity of the compounds inhibiting mTOR activity Inhibition of mTOR is expected to be indicative of activity in treating conditions of excessive or anomalous cell proliferation such as cancer.

15 Assay Principle:

The mTOR kinase TR-FRET assay utilizes a physiologically relevant protein substrate for mTOR (4E-BP1, labeled with an acceptor fluorophore (Green Fluorescent Protein) and paired with a corresponding Tb-labeled phospho-specific antibody. The assay itself can be divided into two phases: the reaction phase and the detection phase.

In the reaction phase, all components required for the kinase reaction are added to the well, including the labeled protein substrate. The reaction is allowed to incubate for 60 minutes. After the reaction, EDTA is added to stop the kinase reaction, and terbium-labeled antibody is added to bind phosphorylated product. Because the terbium chelate is stable at the EDTA concentrations used to stop a kinase assay, the antibody and EDTA can be pre-mixed prior to addition to minimize pipetting steps. Binding of the terbium labeled antibody to the fluorophore-labeled phosphorylated product brings the terbium and GFP into proximity, resulting in an increase in TR-FRET. In the presence of an inhibitor, formation of phosphorylated product is reduced, and the TR-FRET value is decreased.

Abbreviations used							
ACN	acetonitrile	min	minute(s)				
bu	butyl	mL	millilitre				
CDI	carbonyl diimidazole	MS	mass spectrometry				
d	day(s)	N	normal				
DC	thin layer chromatography	NIS	N-iodosuccinimide				
DCM	dichloromethane	NMP	N-methylpyrrolindinone				
DIPEA	diisopropylethyl amine	NMR	nuclear resonance				
			spectroscopy				
DME	dimethylether	NP	normal phase				
DMF	N,N-dimethylformamide	ppm	part per million				
DMSO	dimethylsulphoxide	R_f	retention factor				
eq.	equivalent	RP	reversed phase				
EtOH	ethanol	prep	preparative				
h	hour(s)	RT	room temperature				
HPLC	high performance liquid	tert	tertiary				
	chromatography						
LC	liquid chromatography	t_R	retention time				
M	molar	THF	tetrahydrofuran				
MeOH	methanol	TMS	Tetramethylsilanyl				
Int.	Intermediate	PI3Ka	PI3Kalpha or PI3Kα				
LDA	Lithiumdiisopropylamine	DIA	Diisopropylamine				
PE	Petrolether	TLC	Thin layer				
			chromatography				
EtOAc	Ethylacetate	Pd(dppf)Cl ₂	[1,1-				
	•	(11) 2	Bis(diphenylphosphino)ferrocene]dichloropalladium(II)]				
[Ir(COD)(OMe)] ₂	(1,5-	Pin2B2	Bis(pinacolato)diboron				
	Cyclooctadiene)(methoxy)iridium(I)						
	dimer						

Materials:

GFP-4E-BP1 substrate; Invitrogen order no. PV4759 Lanthascreen Tb-anti-p4E-BP1 (pThr46) Antibody Kit; Invitrogen order no. PV4758

FRAP1 (mTOR) kinase; Invitrogen order no. PV4753 ATP 10 mM

 $5\times$ Assay Buffer (250 mM HEPES pH7.5, 0.05% Polysorbate 20, 5 mM EGTA, 50 mM MnCl2)

EDTA 500 mM

Determining IC₅₀ Values for Test Compounds:

Kinase Reaction Conditions

400 nM GFP-4E-BP1, 8 nM ATP, 150 ng/mL mTOR, 50 mM HEPES pH 7.5, 0.01% Polysorbate 20, 1 mM EGTA, 10 mM MnCl2, and variable amounts of test compounds. Preparation of Reagents

Note: Thaw and keep mTOR, the substrate, ATP, and the antibody on ice prior to making working dilutions. Working dilutions of these components can be kept at room temperature for short periods of time the day of use.

- 1. Add 2 ml of $5\times$ Assay Buffer to 8 ml water to prepare $10\,\text{ml}\ 20$ of $1\times$ Assay Buffer, wherein the concentration of $1\times$ Assay Buffer is $50\,\text{mM}$ HEPES pH 7.5, 0.01% Polysorbate $20,\,1\,\text{mM}$ EGTA, and $10\,\text{mM}$ MnCl2.
- 2. Prepare Antibody/EDTA Solution by first adding 2.75 µl of Tb-anti p4E-BP1 Antibody to 2397 µl of LanthaScreen™ 25 TR-FRET Dilution Buffer. Then, add 100 µl of 0.5 M EDTA.
- 3. Prepare $4\times$ Substrate/Enzyme Solution by first adding $72\,\mu$ l of GFP-4E-BP1 (22 nM) to 926 μ l of $1\times$ Assay Buffer. Then, add $1.6\,\mu$ l of mTOR (0.45 mg/mL).
- 4. Prepare ATP Solution by adding 3.2 μl of 10 mM ATP to $\,$ 30 1997 μl of 1× Assay Buffer.

Serial Dilution of Inhibitors (16 Point Curve)

Inhibitors are serially diluted in DMSO, then diluted to a 4× working concentration with 1× Assay Buffer.

- 1. Dispense 40 μ l of DMSO to two adjacent columns of a 96 $\,$ 35 $\,$ (5%) well plate per compound (e.g. columns 1 and 2).
- 2. Add $10\,\mu$ l of inhibitor stock ($10\,m$ M) to the first well of the first column (A1) and mix.
- 3. Remove $10 \mu l$ from A1 and transfer to the adjacent well in the next column (B1) and mix.
- 4. Remove $10\,\mu l$ from B1 and transfer to the next well in the first column (B2) and mix.
- 5. Repeat this dilution pattern through well H1 and leave the last well (H2) as DMSO only.
- 6. Remove 4 μ l of diluted compounds and add to 96 μ l of 1× 45 Assay Buffer in a 96-well plate making 4× compound dilutions.

Kinase Reaction

- 1. Add 2.5 μ l of 4× compound dilutions to a 384-well plate.
- 2. Add 2.5 µl of 4× Enzyme/Substrate Solution.
- 4. Preincubate for 30 mM at RT (shaker).
- 5. Add 5 µl of ATP Solution to all wells to start reactions.
- 6. Shake the assay plate on a plate shaker for 30 seconds.
- 7. Incubate the assay plate for one hour at room temperature (20-25° C.).

Stop Step and Fluorescence Detection

- 1. Add $10~\mu l$ of Antibody/EDTA Solution to each well in columns 1-9.
- 2. Shake the assay plate on a plate shaker for 30 seconds.
- 3. Incubate the assay plate for one hour at room temperature 60 (20-25° C.).
- 4. Measure the GFP (FRET) and terbium (reference) emission signals on a fluorescence plate reader (e.g. Perkin Elmer Envision).

Data Analysis

1. Calculate the emission ratio for each sample by dividing the GFP (FRET) signal by the terbium (reference) signal.

486

2. Plot the concentration of each compound versus the emission ratio. Determine the concentration of compound required to reach 50% of the maximum signal (IC $_{50}$). Determination of IC $_{50}$ values can be obtained by curve fitting (sigmoidal dose response, variable slope) using Prism software from GraphPad).

Inhibition of PI3Kalpha-induced PIP-2 phosphorylation

PI3Kalpha assay described herein provides $\rm IC_{50}$ values indicating the activity of the compounds inhibiting PI3 kinase alpha activity Inhibition of PI3 kinase is expected to be indicative of activity in treating conditions of excessive or anomalous cell proliferation, such as cancers. See also J. A. Engelman, Nature Reviews Cancer, 2009, 9, 550-562; A. Carnero, Expert Opin. Investig. Drugs, 2009, 18, 1265-1277 and P. Liu et al., Nature Reviews Drug Discovery, 2009, 8, 627-64.

Method Type: Filter-Binding-Assay

1. Materials

Assay buffer: 40 mM HEPES pH 7.5 SIGMA H-3375

100 mM NaCl Merck 1.064.041.000

1 mM EGTA SIGMA E-4378

1 mM β-Glycerophosphate SIGMA G-6253

7 mM MgC12 Merck 58.331.000

1 mM DTT SIGMA D-0632

(0.1% BSA only during preparation of Lipidmix after ultrasonication)

Phospholipid blend mix (=substrate) from Avanti Polar Lipids (#790770):

Phosphatidylinositol-4,5-biphosphate (#840046) 3,665%

Phosphatidylethanolamine (#83022) 39,26%

Phosphatidylserine (#830032) 36,66%

Sphingomyeline (#860062) 3,665%

Phosphatidylcholine (#830053) 16,75%

Per aliquot lipid (16.6 mg): 26 ml assay buffer+520 µl BSA (5%)

PI3 Kinase alpha is expressed in SF9 insect cells, coinfected with viruses encoding p85alpha and His-p110alpha, purified by combined Ni-affinity and anion exchange chromatography). Aliquoted in desired amounts and stored at –80° C. Final assay concentration 25 ng/well Phosphotyrosin PDGFRbeta-peptide H-CGG-pY-MDMSKDESVD-pY-VP-MLDM-NH₂ was synthesized by Jerini Peptide Technologies (JPT) and used in a final conc. of 1.7 μM (stock 100 μM prepared in Assay buffer with DTT, aliquoted in desired amounts and stored at –80° C.)

Cold ATP (from Sigma; A-7699), $100 \mu M$ stock solution in H2O, use $1 \mu M$ final concentration in assay

[33P]-ATP, 370 MBq/ml from Amersham (#AH9968), use $0.5\,\mu\mathrm{Ci/well}$ (10mCi/ml)

Clear 96-well plates from Greiner (#655 162)

Filter plates: Perkin Elmer UniFilter GF/B #6005177

Microscint 0 (from Perkin Elmer, #6013611)

2. Assay Procedure

The substrate-containing lipid vesicles are dissolved to a concentration of 0.637 mg lipid blend/ml assay buffer (with BSA, freshly added) in 50 ml Falcon→keep on ice, followed by ultrasonication (pulse of 15 sec followed by a pause of 10 sec, 4×). Compounds are serially diluted in assay buffer+6% DMSO and 10 µl of each dilution is added per well of a 96-well plate (compounds are tested in duplicates) and mixed with 30 µl of the lipid vesicles containing PDGFR-Peptide (0.5 µM final) and PI3K alpha (25 ng/well final). The mixture is then incubated for 20 minutes at room temperature. Subsequently, 20 µl of assay buffer containing 3 µM cold ATP and 0.5 µCi/20 µl 33P-ATP are added. The plates are then incubated at room temperature for 120 minutes (shaking with 300 rpm). The reaction mix is transferred onto filter plates using

"filtermate harvester" from Packard: filter plates are rinsed with PBS, then the reaction mix is filtered onto the filter plate, washed 5 times with PBS and are allowed to dry for 30-60 minutes at 50° C.

The plate bottom is sealed with Perkin Elmer white adhesive foil and 25 µl/well Microscint0 are added, the top is covered with transparent adhesive foil and the plate is measured with Wallac Trilux 1450 Microbeta Counter.

As positive control serve wells containing vehicle controls (1% DMSO in assay buffer), showing non-inhibited kinase activity (high values). Wells containing assay buffer instead of enzyme can serve as control for background activity (low values).

3. Evaluation

Calculate IC_{50} values using the Smiley program (based on GrapPad Prism)

PC3 Proliferation Test

The test is based on measurement of cellular DNA content via fluorescent dye binding. Because cellular DNA content is highly regulated, it is closely proportional to cell number. The extent of proliferation is determined by comparing cell counts for samples treated with drugs with untreated controls.

PC3 (human prostate carcinoma cell line) cells are sown in microtitre plates and incubated overnight in culture medium at 37° C. and 5% CO2. The test substances are diluted stepwise and added to the cells such that the total volume is 200 $\mu L/$ well. Cells to which diluent, but not substance, is added serve as controls. After an incubation time of 3 days, the medium is replaced by 100 $\mu L/$ well dye-binding solution and the cells are incubated at 37° C. in the dark for a further 60 min. For measuring the fluorescence, excitation takes place at a wavelength of 485 nm and the emission is measured at 530 nm EC $_{50}$ values are calculated using the GraphPad Prism program.

AlamarBlue Assay in AN3 CA Cells

The alamarBlue cell assay provides EC_{50} values indicative of the antiproliferative or cytotoxic effects of the compounds on the AN3 CA human endometrial cancer cell line.

1. Description

alamarBlue® is designed to provide a rapid and sensitive measure of cell proliferation and cytotoxicity in various human and animal cell lines. The assay is based on the reduction of alamarBlue in the reducing environment of living (metabolically active) cells. In the presence of added cytotoxic or antiproliferative compounds, the innate metabolic activity ceases.

AlamarBlue is soluble and stable in culture medium. Measurements are made fluorometrically by exciting at 530-560 nm and measuring emission at 590 nm. In reporting percent alamarBlue reduction by monitoring fluorescence, data are expressed as fluorescence emission intensity units as a function of time of incubation.

Cells and Reagents

AN3 CA cells alamarBlue	Human endometrial cancer cells (ATCC HTB-111) Serotec Ltd
alamarbiue	
PBS (w/o Ca,	Life Technologies, Gibco BRL (Cat. No. 4190-094)
Mg)	
DMEM Medium	Lonza (Cat. No. BE-12-604F)
Fetal calf serum	Life Technologies, Gibco BRL (Cat. No. 10270-106)

3. Equipment

96-well plates, flat bottom (Falcon, Cat. No.: 353072) 96-well plates, U-shaped (Costar, Cat. No.: 3799) CO₂-Incubator

Microplate Reader, Spectramax Plus, Molecular Devices

488

4. Typical Procedure

Day 0: Seed 3000 AN3 CA cells (DMEM/10% FCS) in 180 μ l medium into a 96-well plate, flat bottom (include medium blank). Incubate plates at 37° C. in a CO₂ incubator overnight.

Day 1: Dilute compounds to a concentration 100 μM→1:5, 10 dilution steps, in 96-well plates.

Add 20 µl per well of each dilution to cells (total volume per well 200 µl; final conc. of cpds: 10 µM→1:5; 0.5% DMSO final). If required, test further dilutions.

All concentrations are tested in duplicates.

Controls: Cells w/o cpd. (+20 µl medium/DMSO).

Cells are incubated with compounds for 3 days.

Day 4: Add 25 µl of alamarBlue solution to each well and incubate for 5-8 hours at 37° C. Measure fluorescence by exciting at 530-560 nm and measuring emission at 590 nm

Calculate EC₅₀ using GraphPad Prism (Fifty).

alamarBlue® assay can be used to measure the inhibition of mTOR as well as PI3Kalpha in vitro.

CyQuant Assay in U87MG Cells

The CyQuant assay provides EC_{50} values indicative of the antiproliferative or cytotoxic effects of the compounds on the U87MG human glioblastoma cell line.

1. Description

The test is based on measurement of cellular DNA content via fluorescent dye binding. Because cellular DNA content is highly regulated, it is closely proportional to cell number. The extent of proliferation is determined by comparing cell counts for samples treated with drugs with untreated controls. In the assay, a DNA-binding dye in combination with a plasma membrane permeabilization reagent is used. The medium is aspirated, replaced with dye binding solution, cells are incubated for 30-60 min, then fluorescence is measured (excitation at 485 nm, emission detection at 530 nm). Data are expressed as fluorescence emission intensity units as a function of time of incubation.

2. Cells and Reagents

U-87MG cells
CyQuant NF assay
PBS (w/o Ca, Mg)
RPMI1640 Medium
Fetal calf serum

Fetal calf serum

U-87MG cells
Human glioblastoma cells (ATCC HTB-14)
Invitrogen Cat.# C35006
Life Technologies, Gibco BRL (Cat. No. 4190-094)
Life Technologies, Gibco BRL (Cat. No. 61870-010)
Life Technologies, Gibco BRL (Cat. No. 10270-106)

3. Equipment

60

96-well plates, flat bottom (Falcon, Cat. No.: 353072) 96-well plates, U-shaped (Costar, Cat. No.: 3799) CO₂-Incubator

Microplate Reader, Wallac Victor

4. Typical Procedure

Day 0: Seed 3000 U-87MG cells (cultured in RPMI/10% FCS) in 150 IA medium into a 96-well plate, flat bottom (include mediumblank). Incubate plates at 37° C. in a CO₂ incubator overnight.

Day 1: Dilute compounds to a concentration 80 μM→1:5 in medium, 7 dilution steps, in 96-well plates.

Add 50 μl per well of each dilution (total volume per well 200 μl; final conc. of cpds: 20 μM→1:5). If required, test further dilutions.

All concentrations are tested in duplicates or triplicates. Controls: Cells w/o cpd. (+50 µl medium+DMSO).

Cells are incubated with compounds for 3 days.

Day 4: Aspirate off medium and replace with 100 μl of 1× dye binding solution (22 μl CyQuant NF dye reagent added to

11 ml of 1×HBSS buffer). Cover the microplate and incubate for 30-60 min for equilibration of dye-DNA binding. Measure the fluorescence intensity in a microplate reader (excitation at 485 nm, emission detection at 530 nm).

5. Evaluation

Calculate EC₅₀ using GraphPad Prism (Fifty)

The substances of the present invention are PI3 kinase pathway inhibitors, in particular of the serine/threonine kinase mTOR and/or members of the lipid kinase family Pi3K. On account of their biological properties, the novel compounds of the general formula (1) and their isomers and their physiologically tolerated salts are suitable for treating diseases which are characterized by excessive or anomalous cell proliferation.

These diseases include, for example: viral infections (e.g. 15 HIV and Kaposi's sarcoma); inflammation and autoimmune diseases (e.g. colitis, arthritis, Alzheimer's disease, glomerulonephritis and wound healing); bacterial, fungal and/or parasitic infections; leukaemias, lymphomas and solid tumours; skin diseases (e.g. psoriasis); bone diseases; cardiovascular 20 diseases (e.g. restenosis and hypertrophy). In addition, the compounds are useful for protecting proliferating cells (e.g. hair cells, intestinal cells, blood cells and progenitor cells) from DNA damage due to irradiation, UV treatment and/or cytostatic treatment (Davis et al., 2001).

For example, the following cancer diseases can be treated with compounds according to the invention, without, however, being restricted thereto: brain tumours, such as acoustic neurinoma, astrocytomas such as piloid astrocytomas, fibrillary astrocytoma, protoplasmic astrocytoma, gemistocytic 30 astrocytoma, anaplastic astrocytoma and glioblastomas, brain lymphomas, brain metastases, hypophyseal tumour such as prolactinoma, HGH (human growth hormone) producing tumour and ACTH-producing tumour (adrenocorticotrophic hormone), craniopharyngiomas, medulloblasto- 35 mas, meningiomas and oligodendrogliomas; nerve tumours (neoplasms) such as tumours of the vegetative nervous system such as neuroblastoma sympathicum, ganglioneuroma, paraganglioma (phaeochromocytoma and chromaffinoma) and glomus caroticum tumour, tumours in the peripheral ner- 40 vous system such as amputation neuroma, neurofibroma, neurinoma (neurilemoma, schwannoma) and malignant schwannoma, as well as tumours in the central nervous system such as brain and spinal cord tumours; intestinal cancer such as rectal carcinoma, colon carcinoma, anal carcinoma, 45 small intestine tumours and duodenal tumours; eyelid tumours such as basalioma or basal cell carcinoma; pancreatic gland cancer or pancreatic carcinoma; bladder cancer or bladder carcinoma; lung cancer (bronchial carcinoma) such as small-cell bronchial carcinomas (oat cell carcinomas) and 50 non-small-cell bronchial carcinomas such as squamous epithelium carcinomas, adenocarcinomas and large-cell bronchial carcinomas; breast cancer such as mammary carcinoma, such as infiltrating ductal carcinoma, colloid carcinoma, lobular invasive carcinoma, tubular carcinoma, adenoid cys- 55 tic carcinoma, and papillary carcinoma; non-Hodgkin's lymphomas (NHL) such as Burkitt's lymphoma, low-malignancy non-Hodkgin's lymphomas (NHL) and mucosis fungoides; uterine cancer or endometrial carcinoma or corpus carcinoma; CUP syndrome (cancer of unknown primary); ovarian 60 cancer or ovarian carcinoma such as mucinous, endometrial or serous cancer; gall bladder cancer; bile duct cancer such as Klatskin's tumour; testicular cancer such as seminomas and non-seminomas; lymphoma (lymphosarcoma) such as malignant lymphoma, Hodgkin's disease, non-Hodgkin's lympho- 65 mas (NHL) such as chronic lymphatic leukaemia, hair cell leukaemia, immunocytoma, plasmocytoma (multiple

490

myeloma), immunoblastoma, Burkitt's lymphoma, T-zone mycosis fungoides, large-cell anaplastic lymphoblastoma and lymphoblastoma; laryngeal cancer such as vocal cord tumours, supraglottal, glottal and subglottal laryngeal tumours; bone cancer such as osteochondroma, chondroma, chrondoblastoma, chondromyxoidfibroma, osteoma. osteoid-osteoma, osteoblastoma, eosinophilic granuloma, giant cell tumour, chondrosarcoma, osteosarcoma, Ewing's sarcoma, reticulosarcoma, plasmocytoma, fibrous dysplasia, juvenile bone cyst and aneurysmatic bone cyst; head/neck tumours such as tumours of the lips, tongue, floor of the mouth, oral cavity, gingiva, pallet, salivary glands, pharynx, nasal cavities, paranasal sinuses, larynx and middle ear; liver cancer such as liver cell carcinoma or hepatocellular carcinoma (HCC); leukaemias, such as acute leukaemias, such as acute lymphatic/lymphoblastic leukaemia (ALL), acute myeloid leukaemia (AML); chronic leukaemias such as chronic lymphatic leukaemia (CLL), chronic myeloid leukaemia (CML); stomach cancer or stomach carcinoma such as papillary, tubular and mucinous adenocarcinoma, signet ring cell carcinoma, adenoid squamous cell carcinoma, small-cell carcinoma and undifferentiated carcinoma; melanomas such as superficially spreading, nodular malignant lentigo and acral lentiginous melanoma; renal cancer, such as kidney cell carcinoma or hypernephroma or Grawitz's tumour; oesophageal cancer or oesophageal carcinoma; cancer of the penis; prostate cancer; pharyngeal cancer or pharyngeal carcinomas such as nasopharyngeal carcinomas, oropharyngeal carcinomas and hypopharyngeal carcinomas; retinoblastoma; vaginal cancer or vaginal carcinoma; squamous epithelium carcinomas, adeno carcinomas, in situ carcinomas, malignant melanomas and sarcomas; thyroid gland carcinomas such as papillary, follicular and medullary thyroid gland carcinoma, and also anaplastic carcinomas; spinalioma, prickle cell carcinoma and squamous epithelium carcinoma of the skin; thymomas, urethral cancer and vulvar cancer.

The novel compounds can be used for the prevention or short-term or long-term treatment of the abovementioned diseases including, where appropriate, in combination with other state-of-the-art compounds such as other anti-tumour substances, cytotoxic substances, cell proliferation inhibitors, antiangiogenic substances, steroids or antibodies.

The compounds of the general formula (1) can be used on their own or in combination with other active compounds according to the invention and, where appropriate, in combination with other pharmacologically active compounds as well. Chemotherapeutic agents which can be administered in combination with the compounds according to the invention include, without being restricted thereto, hormones, hormone analogs and antihormones (e.g. tamoxifen, toremifene, raloxifene, fulvestrant, megestrol acetate, flutamide, nilutamide, bicalutamide, aminoglutethimide, cyproterone acetate, finasteride, buserelin acetate, fludrocortisone, fluoxymesterone, medroxyprogesterone and octreotide), aromatase inhibitors (e.g. anastrozole, letrozole, liarozole, vorozole, exemestane and atamestane), LHRH agonists and antagonists (e.g. goserelin acetate and luprolide), inhibitors of growth factors (growth factors such as platelet-derived growth factor and hepatocyte growth factor, examples of inhibitors are growth factor antibodies, growth factor receptor antibodies and tyrosine kinase inhibitors, such as gefitinib, imatinib, lapatinib, Erbitux® and trastuzumab); antimetabolites (e.g. antifolates such as methotrexate and raltitrexed, pyrimidine analogs such as 5-fluorouracil, capecitabine and gemcitabine, purine and adenosine analogs such as mercaptopurine, thioguanine, cladribine and pentostatin, cytarabine and flu-

darabine); antitumour antibiotics (e.g. anthracyclines, such as doxorubicin, daunorubicin, epirubicin and idarubicin, mitomycin C, bleomycin, dactinomycin, plicamycin and streptozocin); platinum derivatives (e.g. cisplatin, oxaliplatin and carboplatin); alkylating agents (e.g. estramustine, meclore- 5 thamine, melphalan, chlorambucil, busulphan, dacarbazine, cyclophosphamide, ifosfamide and temozolomide, nitrosoureas such as carmustine and lomustine and thiotepa); antimitotic agents (e.g. vinca alkaloids such as vinblastine, vindesine, vinorelbine and vincristine; and taxans such as 10 paclitaxel and docetaxel); topoisomerase inhibitors (e.g. epipodophyllotoxins such as etoposide and etopophos, teniposide, amsacrine, topotecan, irinotecan and mitoxantrone) and various chemotherapeutic agents such as amifostin, anagrelide, clodronate, filgrastin, interferon alpha, leucov- 15 orin, rituximab, procarbazine, levamisole, mesna, mitotan, pamidronate and porfimer.

Examples of suitable forms for use are tablets, capsules, suppositories, solutions, in particular solutions for injection (s.c., i.v., i.m.) and infusion, syrups, emulsions or dispersible 20 powders. In this connection, the proportion of the pharmaceutically active compound(s) should in each case be in the range of 0.1-90% by weight, preferably 0.5-50% by weight, of the total composition, that is in quantities which are sufficient to achieve the dosage range which is specified below. If 25 necessary, the doses mentioned can be given several times a day.

Appropriate tablets can be obtained, for example, by mixing the active compound(s) with known auxiliary substances, for example inert diluents, such as calcium carbonate, calcium phosphate or lactose, disintegrants, such as maize starch or alginic acid, binders, such as starch or gelatine, lubricants, such as magnesium stearate or talc, and/or agents for achieving a depot effect, such as carboxymethyl cellulose, cellulose acetate phthalate or polyvinyl acetate. The tablets can also 35 comprise several layers.

Correspondingly, sugar-coated tablets can be produced by coating cores, which have been prepared in analogy with tablets, with agents which are customarily used in sugar coatings, for example collidone or shellac, gum arabic, talc, titanium dioxide or sugar. The core can also comprise several layers in order to achieve a depot effect or to avoid incompatibilities. In the same way, the sugar coating can also comprise several layers in order to achieve a depot effect, with it being possible to use the auxiliary substances which are mentioned 45 above in the case of the tablets.

Syrups of the active compounds or active compound combinations according to the invention can additionally comprise a sweetening agent, such as saccharine, cyclamate, glycerol or sugar as well as a taste-improving agent, e.g. 50 flavouring agents such as vanillin or orange extract. They can also comprise suspension aids or thickeners, such as sodium carboxymethyl cellulose, wetting agents, for example condensation products of fatty alcohols and ethylene oxide, or protectants such as p-hydroxybenzoates.

Injection and infusion solutions are produced in a customary manner, e.g. while adding isotonizing agents, preservatives, such as p-hydroxybenzoates, or stabilizers, such as alkali to metal salts of ethylenediaminetetraacetic acid, where appropriate using emulsifiers and/or dispersants, with it being 6 possible, for example, to employ, where appropriate, organic solvents as solubilizing agents or auxiliary solvents when using water as diluent, and aliquoted into injection bottles or ampoules or infusion bottles.

The capsules, which comprise one or more active com- 65 pounds or active compound combinations, can, for example, be produced by mixing the active compounds with inert car-

492

riers, such as lactose or sorbitol, and encapsulating the mixture in gelatine capsules. Suitable suppositories can be produced, for example, by mixing with excipients which are envisaged for this purpose, such as neutral fats or polyethylene glycol, or their derivatives.

Auxiliary substances which may be mentioned by way of example are water, pharmaceutically unobjectionable organic solvents, such as paraffins (e.g. petroleum fractions), oils of vegetable origin (e.g. groundnut oil or sesame oil), monofunctional or polyfunctional alcohols (e.g. EtOH or glycerol), carrier substances such as natural mineral powders (e.g. kaolins, argillaceous earths, talc and chalk), synthetic mineral powders (e.g. highly disperse silicic acid and silicates), sugars (e.g. cane sugar, lactose and grape sugar), emulsifiers (e.g. lignin, sulphite waste liquors, methyl cellulose, starch and polyvinylpyrrolidone) and glidants (e.g. magnesium stearate, talc, stearic acid and sodium lauryl sulphate).

Administration is effected in a customary manner, preferably orally or transdermally, in particular and preferably orally. In the case of oral use, the tablets can naturally also comprise, in addition to the abovementioned carrier substances, additives such as sodium citrate, calcium carbonate and dicalcium phosphate together with a variety of further substances such as starch, preferably potato starch, gelatine and the like. It is furthermore also possible to use glidants, such as magnesium stearate, sodium lauryl sulphate and talc, for the tableting. In the case of aqueous suspensions, a variety of taste improvers or dyes can also be added to the active compounds in addition to the abovementioned auxiliary substances.

For parenteral administration, it is possible to employ solutions of the active compounds to while using suitable liquid carrier materials. The dosage for intravenous administration is 1-1000 mg per hour, preferably between 5 and 500 mg per hour.

Despite this, it may be necessary, where appropriate, to diverge from the above-mentioned quantities, depending on the body weight or the nature of the route of administration, on the individual response to the medicament, on the nature of its formulation and on the time or interval at which the administration is effected. Thus, it may, in some cases, be sufficient to make do with less than the previously mentioned lowest quantity whereas, in other cases, the abovementioned upper limit has to be exceeded. When relatively large quantities are being administered, it may be advisable to divide these into several single doses which are given over the course of the day.

The following formulation examples illustrate the present invention without, however, restricting its scope:

Pharmaceutical Formulation Examples

55	A) Tablets	per tablet
50	Active compound in accordance with formula (1) Lactose Maize starch Polyvinylpyrrolidone Magnesium stearate	100 mg 140 mg 240 mg 15 mg 5 mg
		500 mg

The finely ground active compound, lactose and a part of the maize starch are mixed with each other. The mixture is sieved, after which it is moistened with a solution of polyvinylpyrrolidone in water, kneaded, wet-granulated and dried.

40

60

493

The granular material, the remainder of the maize starch and the magnesium stearate are sieved and mixed with each other. The mixture is pressed into tablets of suitable shape and size.

80 mg	_
oo mg	
55 mg	
190 mg	
35 mg	1
15 mg	
23 mg	
2 mg	
	190 mg 35 mg 15 mg 23 mg

The finely ground active compound, a part of the maize starch, the lactose, microcrystalline cellulose and polyvinylpyrrolidone are mixed with each other, after which the mixture is sieved and worked, together with the remainder of the maize starch and water, into a granular material, which is dried and sieved. The sodium carboxymethyl starch and the magnesium stearate are then added to the granular material and mixed with it, and the mixture is pressed into tablets of suitable size.

C) Ampoule solution		_
Active compound in accordance with formula (1) Sodium chloride Water for injection	50 mg 50 mg 5 mL	30

The active compound is dissolved, either at its intrinsic pH or, where appropriate, at pH 5.5-6.5, in water after which sodium chloride is added as isotonizing agent. The resulting solution is rendered pyrogen-free by filtration and the filtrate is aliquoted, under aseptic conditions, into ampoules, which are then sterilized and sealed by melting. The ampoules contain 5 mg, 25 mg and 50 mg of active compound.

The invention claimed is:

1. A method of treating a disease, wherein the disease is cancer selected from a group consisting of prostrate, breast and ovarian cancer, comprising administering an effective amount of a compound of formula 1 or a pharmaceutically acceptable salt thereof, to a patient in need thereof, wherein:

$$\mathbb{R}^{2}$$
 \mathbb{R}^{3} , (1)
 \mathbb{R}^{1}

 R^3 denotes a group selected from among 3-8 membered heterocycloalkyl, $C_{6\text{-}10}$ aryl and 5-12 membered heteroaryl, optionally substituted by one or more identical or different R^4 ; and

 R^1 denotes a group selected from among $C_{6\text{--}10} \mathrm{aryl}$ and 5-12 membered heteroaryl, optionally substituted by one or more identical or different R^5 and

R² denotes a group selected from among hydrogen, C_{1.4}alkyl, C_{3.8}cycloalkyl, 3-8 membered heteroalkyl, 65 3-8 membered heterocycloalkyl, —OR^ν, —SR^ν, —CF₃, —CN, —NC and —NO₂, and

494

each R^4 denotes a group selected from among R^a and R^b ;

each R^a independently of one another denotes hydrogen or a group selected from among $C_{1\text{--}6}$ alkyl, 2-6 membered heteroalkyl, $C_{1\text{--}6}$ haloalkyl, $C_{3\text{--}10}$ cycloalkyl, $C_{4\text{--}16}$ cycloalkylalkyl, $C_{6\text{--}10}$ aryl, $C_{7\text{--}16}$ arylalkyl, 5-12 membered heteroaryl, 6-18 membered heteroarylalkyl, 3-14 membered heterocycloalkyl and 4-14 membered heterocycloalkyl and 4-14 membered by one or more identical or different R^b and/or R^{c4} ,

each R^b denotes a suitable group and is selected independently of one another from among =0, $-OR^c$, C_{1-3} haloalkyloxy, $-OCF_3$, $-OCHF_2$, =S, $-SR^c$, $=NR^c$, =NOR c , $=NNR^{c}R^{c1}$, =NN(R^g)C(O)NR^cR^{c1} $-N(OR^c)R^{c1}$, $-N(R^g)$ -CN, -NC, -OCN, $-ONR^{c}R^{c1}$, $-NR^cR^{c1}$ $\begin{array}{lll} \operatorname{NR}^c \operatorname{R}^{c1}, & \operatorname{halogen}, & -\operatorname{CF}_3, & -\operatorname{CN}, & -\operatorname{NC}, & -\operatorname{OCN}, \\ -\operatorname{SCN}, & -\operatorname{NO}, & -\operatorname{NO}_2, & -\operatorname{N}_2, & -\operatorname{N}_3, & -\operatorname{S(O)}\operatorname{R}^c, & -\operatorname{S(O)} \end{array}$ OR^c , $-S(O)_2R^c$, $-S(O)_2OR^c$, $-S(O)NR^cR^{c1}$ $-S(O)_2NR^cR^{c\tilde{1}}$, $-OS(O)R^c$, $-OS(O)_2R^c$, $-OS(O)_2$ OR^c , $-OS(O)NR^cR^{c1}$, $-OS(O)_2NR^cR^{c1}$, $-C(O)R^c$. $-C(O)OR^c$, $-C(O)SR^c$, $-C(\tilde{O})NR^cR^{c1}$, $-C(\tilde{O})N$ $(R^g)NR^cR^{c1}$, $-C(O)N(R^g)OR^c$, $-C(NR^g)NR^cR^{c1}$ $-C(NOH)R^c$, $-C(NOH)NR^cR^{c1}$, $-OC(O)R^c$, -OC $\begin{array}{l} \text{(O)OR}^c, & -\text{OC(O)SR}^c, & -\text{OC(O)NR}^c\text{R}^{c1}, & -\text{OC(NR}^s)\\ \text{NR}^c\text{R}^{c1}, & -\text{SC(O)R}^c, & -\text{SC(O)OR}^c, & -\text{SC(O)NR}^c\text{R}^{c1},\\ -\text{SC(NR}^s)\text{NR}^c\text{R}^{c1}, & -\text{N(R}^s)\text{C(O)R}^c, & -\text{N[C(O)R}^c]\text{[C]} \end{array}$ $(O)R^{c1}$], $-N(R^g)C(NR^{g1})R^c$ $--N(OR^g)C(O)R^c$, $-\dot{N}(R^g)N(R^{g1})C(O)R^c$ $-N[C(O)R^{c2}]NR^{c}R^{c1}$ $-N(R^g)C(S)R^c$, $-N(R^g)S(O)R^c$, $-N(R^g)S(O)OR^c$ $-N(R^g)S(O)_2R^c$, $-N[S(O)_2R^c][S(O)_2R^{c1}]$, $-N(R^g)S(O)_2R^{c1}$ $(O)_2OR^c$, $-N(R^g)S(O)_2NR^cR^{c1}$, $-N(R^g)[S(O)_2]_2R^c$, $-N(R^g)C(O)OR^c$, $-N(R^g)C(O)SR^c$, $-N(R^g)C(O)$ $\begin{array}{l} NR^cR^{c1}, -N(R^g)C(O)NR^{g1}NR^cR^{c1}, -N(R^g)N(R^{g1})C\\ (O)NR^cR^{c1}, -N(R^g)C(S)NR^cR^{c1}, -[N(R^g)C(O)]_2R^c, \end{array}$ $-N(R^g)[C(O)]_2R^c$ $-N\{[C(O)]_{2}R^{c}\}\{[C(O)]_{2}R^{c1}\}$ $-N(R^g)[C(O)]_2^2OR^c$, $-N(R^g)[C(O)]_2NR^cR^{c1}$, $-N\{[C(O)]_2NR^cR^{c2}]$ $(O)]_2OR^c$ { $[C(O)]_2OR^{c1}$ }, -N{ $[C(O)]_2NR^cR^{c1}$ }{ $[C(O)]_2NR^cR^{c1}$ } $(O)_{12}^{12}NR^{c2}R^{c3}$, $-[N(R^g)C(O)]_2OR^c$, $(NR^{g1})OR^c$, $-N(R^g)C(NOH)R^c$, $-N(R^g)C(NR^{g1})$ SR^c , $-N(R^g)C(NR^{g1})NR^cR^{c1}$, $-N(R^g)C(=N-CN)$ NR^cR^{c1} and $-N=C(R^g)NR^cR^{c1}$ and

each R^c , R^d , R^{c2} , R^{c3} and R^{c4} independently of one another denotes hydrogen or a group selected from among C_{1-6} alkyl, 2-6 membered heteroalkyl, C_{1-6} haloalkyl, C_{3-10} cycloalkyl, C_{4-16} cycloalkylalkyl, C_{6-10} aryl, C_{7-16} arylalkyl, 5-12 membered hetero-aryl, 6-18 membered heteroarylalkyl, 3-14 membered heterocycloalkyl and 4-14 membered heterocycloalkyl lakyl, R^c , R^{c1} , R^{c2} , R^{c3} and R^{c4} independently optionally being substituted by one or more identical or different R^d and/or R^{c4} , where R^c together with R^g and/or R^{c1} and/or R^{c2} and/or R^{c3} or R^{c2} together with R^{c3} may form a 3-8 membered heterocyclalkyl residue via a shared C-, N- O- or S-atom, and

each R^d denotes a suitable group and is selected independently of one another from among \longrightarrow O, \longrightarrow OR^e, C₁₋₃haloalkyloxy, $-OCF_3$, $-OCHF_2$, =S, $-SR^e$, $=NR^e$, $= NNR^{e}R^{e1},$ $=NN(R^{g2})C(O)NR^{e}R^{e1},$ =NOR e , $-NR^eR^{e1}$, $-ONR^eR^{e1}$, $-N(R^{g2})NR^eR^{e1}$, halogen, $-CF_3$, -CN, -NC, -OCN, -SCN, -NO, $-NO_2$, =N₂, -N₃, -S(O)R^e, -S(O)OR^e, -S(O)₂R^e, $-S(O)_2OR^e$, $-S(O)NR^eR^{e1}$, $-S(O)_2NR^eR^{e1}$, $-OS(O)_2NR^eR^{e1}$, $-OS(O)_2NR^eR^{e1}$ $(O)R^e$, $-OS(O)_2R^e$, $-OS(O)_2OR^e$, $-OS(O)NR^eR^{e1}$. $-OS(O)_2NR^eR^{e1}$, $-C(O)R^{e}$, $-C(O)OR^e$, -C(O) SR^e , $-C(O)NR^eR^{e1}$, $-C(O)N(R^{g2})NR^eR^{e1}$, -C(O)N $-C(NR^{g2})NR^eR^{e1}$, $--C(NOH)R^e$ $-C(NOH)NR^eR^{e1}$, $-OC(O)R^e$, $-OC(O)OR^e$, $-OC(O)OR^e$

 $\begin{array}{llll} & ({\rm O}){\rm SR}^e, & - {\rm OC}({\rm O}){\rm NR}^e{\rm R}^{e1}, & - {\rm OC}({\rm NR}^{g2}){\rm NR}^e{\rm R}^{e1}, & - {\rm SC}\\ & ({\rm O}){\rm R}^e, & - {\rm SC}({\rm O}){\rm OR}^e, & - {\rm SC}({\rm O}){\rm NR}^e{\rm R}^{e1}, & - {\rm SC}({\rm NR}^{g2})\\ & {\rm NR}^e{\rm R}^{e1}, & - {\rm N}({\rm R}^{g2}){\rm C}({\rm O}){\rm R}^e, & - {\rm N}[{\rm C}({\rm O}){\rm R}^e][{\rm C}({\rm O}){\rm R}^{e1}],\\ & - {\rm N}({\rm OR}^{g2}){\rm C}({\rm O}){\rm R}^e, & - {\rm N}({\rm R}^{g2}){\rm C}({\rm O}){\rm R}^e, & - {\rm N}({\rm R}^{g2}){\rm N}\\ & ({\rm R}^{g3}){\rm C}({\rm O}){\rm R}^e, & - {\rm N}({\rm C}({\rm O}){\rm R}^e]{\rm NR}^e{\rm R}^{e1}, & - {\rm N}({\rm R}^{g2}){\rm C}({\rm S}){\rm R}^e, & 5\\ & - {\rm N}({\rm R}^{g2}){\rm S}({\rm O}){\rm R}^e, & - {\rm N}({\rm R}^{g2}){\rm S}({\rm O}){\rm C}{\rm R}^e, & - {\rm N}({\rm R}^{g2}){\rm S}({\rm O})_2{\rm C}{\rm R}^e,\\ & - {\rm N}[{\rm S}({\rm O})_2{\rm R}^e][{\rm S}({\rm O})_2{\rm R}^{e1}], & - {\rm N}({\rm R}^{g2}){\rm S}({\rm O})_2{\rm O}{\rm R}^e,\\ & - {\rm N}({\rm R}^{g2}){\rm S}({\rm O})_2{\rm R}^e{\rm R}^{e1}, & - {\rm N}({\rm R}^{g2}){\rm S}({\rm O})_2{\rm R}^e,\\ & - {\rm N}({\rm R}^{g2}){\rm C}({\rm O}){\rm R}^e{\rm R}^{e1}, & - {\rm N}({\rm R}^{g2}){\rm C}({\rm O})\\ & {\rm N}^e{\rm R}^{e1}, & - {\rm N}({\rm R}^{g2}){\rm C}({\rm O}){\rm R}^{g3}{\rm N}{\rm R}^e{\rm R}^{e1}, & - {\rm N}({\rm R}^{g2}){\rm C}({\rm O})\\ & {\rm N}^e{\rm R}^{e1}, & - {\rm N}({\rm R}^{g2}){\rm C}({\rm O}){\rm R}^e{\rm R}^{e3}{\rm N}{\rm R}^e{\rm R}^{e1}, & - {\rm N}({\rm R}^{g2}){\rm C}({\rm O})\\ & {\rm N}^e{\rm R}^{e1}, & - {\rm N}({\rm R}^{g2}){\rm C}({\rm O}){\rm R}^e{\rm R}^{e1}, & - {\rm N}({\rm R}^{g2}){\rm C}({\rm O})\\ & {\rm N}^e{\rm R}^{e1}, & - {\rm N}({\rm R}^{g2}){\rm C}({\rm O}){\rm R}^e{\rm R}^e, & - {\rm N}({\rm R}^{g2}){\rm C}({\rm O})\\ & {\rm N}^e{\rm R}^{e1}, & - {\rm N}({\rm R}^{g2}){\rm C}({\rm O}){\rm R}^e, & - {\rm N}({\rm R}^{g2}){\rm C}({\rm O})\\ & {\rm N}^e{\rm R}^{e1}, & - {\rm N}({\rm R}^{g2}){\rm C}({\rm O}){\rm R}^e, & - {\rm N}({\rm R}^{g2}){\rm C}({\rm O})\\ & {\rm N}^e{\rm R}^{e1}, & - {\rm N}({\rm R}^{g2}){\rm C}({\rm N}{\rm R}^{g3}){\rm O}{\rm R}^e, & - {\rm N}({\rm R}^{g2}){\rm C}({\rm N}{\rm R}^{g3})\\ & {\rm N}^e{\rm R}^{e1}, & - {\rm N}({\rm R}^{g2}){\rm C}({\rm N}{\rm R}^{g3}){\rm SR}^e, & - {\rm N}({\rm R}^{g2}){\rm C}({\rm N}{\rm R}^{g3})\\ & {\rm N}^e{\rm R}^{e1}, & - {\rm N}({\rm R}^{g2}){\rm C}({\rm C}){\rm N}^e{\rm C}^{e1}\\ & {\rm N}^e{\rm R}^e, & - {\rm N}({\rm R}^{g2})$

each R^e, R^{e1}, R^{e2}, R^{e3} and R^{e4} independently of one 20 another denotes hydrogen or a group selected from among C₁₋₆alkyl, 2-6 membered heteroalkyl, C₁₋₆haloalkyl, C₃₋₁₀cycloalkyl, C₄₋₁₆cycloalkylalkyl, C₆₋₁₀aryl, C₇₋₁₆arylalkyl, 5-12 membered hetero-aryl, 6-18 membered heteroarylalkyl, 3-14 membered hetero-cycloalkyl and 4-14 membered heterocycloalkylalkyl, where R^e together with R^{g2} and/or R^{e1} and/or R^{e2} and/or R^{e3} or R^{e2} together with R^{e3} may form a 3-8 membered heterocyclalkyl residue via a shared C-, N-, O- or S-atom, and where R^e, R^{e1}, R^{e2}, R^{e3} and R^{e4} independently optionally being substituted by one or more identical or different R^f and/or R^{g6}, and

each Rf denotes a suitable group and in each case is selected independently of one another from among =0, $-OR^g$, C_{1-3} haloalkyloxy, $-OCF_3$, $-OCHF_2$, =S, $-SR^g$, 35 $=NR^{g4}$, $=NOR^{g4}$, $=NNR^{g4}R^{g5}$, $=NN(R^h)C(O)$ $NR^{g4}R^{g5}$, $-NR^{g4}R^{g5}$, $-ONR^{g4}R^{g5}$, $-N(R^h)$ $NR^{g4}R^{g5}$, halogen, $-CF_3$, -CN, -NC, -OCN, $(R^h)OR^{g4}$. $-C(NOH)R^{g4}$, 45 $-C(NR^h)NR^{g4}R^{g5}$, $\begin{array}{lll} -\mathrm{C(NOH)NR^{g4}R^{g5}}, & -\mathrm{OC(O)R^{g4}}, \\ -\mathrm{OC(O)SR^{g4}}, & -\mathrm{OC(O)NR^{4g}R^{g5}}, \end{array}$ $--OC(O)OR^{g4}$ $-OC(O)SR^{g4}$. $--OC(NR^h)$ $NR^{g4}R^{g5}$, $-SC(O)R^{g4}$, $-SC(O)OR^{g4}$, $NR^{g4}R^{g5}$, $-SC(NR^h)NR^{g4}R^{g5}$, $-N(R^h)R^{g4}R^{g5}$, $-N(R^h)R^{g4}R^{g5}$ $NR^{g4}R^{g5}$, $-SC(NR^h)NR^{g4}R^{g5}$, $-N(R^h)C(O)R^{g4}$, $-N[C(O)R^{g4}]_2$, $-N(OR^h)C(O)R^{g4}$, $-N(R^h)C(NR^{h1})$ 50 $\begin{array}{lll} R^{g4}, & -N(R^h)N(R^{h1})C(O)R^{g4}, & -N[C(O)R^{g6}]NR^{g4}R^{g5}, \\ -N(R^h)C(S)R^{g4}, & -N(R^h)S(O)R^{g4}, & -N(R^h)S(O) \end{array}$ OR^{g4} , $-N(R^h)S(O)_2R^{g4}$, $-N[S(O)_2R^{g4}][S(O)_2R^{g5}]$, $-N(R^h)S(O)_2OR^{g4}, -N(R^h)S(O)_2NR^{g4}R^{g5}, -N(R^h)$ $[S(O)_{2}]_{2}R^{g4}, -N(R^{h})C(O)OR^{g4}, -N(R^{h})C(O)SR^{g4}, 55$ $-N(R^{h})C(O)NR^{g4}R^{g5}, -N(R^{h})C(O)NR^{h1}NR^{g4}R^{g5},$ $-N(R^h)N(R^{h_1})C(O)NR^{g_4}R^{g_5}, -N(R^h)C(S)NR^{g_4}R^{g_5}$ $-[N(R^h)C(O)][N(R^{h1})C(O)]R^{g4}, -[N(R^h)]C(O)]_2R^{g4},$ $\begin{array}{l} -N\{[C(O)]_2R^{s4}\}\{[C(O)]_2R^{s5}\}, & -N(R^h)[C(O)]_2\\ OR^{s4}, -N(R^h)[C(O)]_2NR^{s4}R^{s5}, -N\{[C(O)]_2OR^{s4}\}\{[C(O)]_2OR^{s4}\}, & -N\{[C(O)]_2NR^{s4}R^{s5}\}\{[C(O)]_2NR^{s4}\}, \\ R_s^{s5}\}, & -[N(R^h)C(O)][N(R^{h1})C(O)]OR^{s4}, & -N(R^h)C(R^{h1}$ $(NR^{h1})OR^{g4}, -N(R^h)C(NOH)R^{g4}, -N(R^h)C(NR^{h1})$ $SR^{g4}, -N(R^h)C(NR^{h1})NR^{g4}R^{g5}, -N(R^h)C(=N-$ CN)NR g4 R g5 and —N=C(R h)NR g4 R g5 ; and each Rg, Rg1, Rg2, Rg3, Rg4, Rg5 and Rg6 independently of

one another denotes hydrogen or a group selected from

496

among C_{1-6} alkyl, 2-6 membered heteroalkyl, C_{1-6} haloalkyl, C_{3-10} cycloalkyl, C_{4-16} cycloalkylalkyl, C_{6-10} aryl, C_{7-16} arylalkyl, 5-12 membered hetero-aryl, 6-18 membered heteroarylalkyl, 3-14 membered heterocycloalkyl and 4-14 membered heterocycloalkylalkyl, where R^g together with R^{g1} and/or R^h may form a 3-8 membered cycloalkyl or a 3-8 membered heterocyclalkyl residue via a shared C-, N-O- or S-atom, and where R^g , R^{g1} , R^{g2} , R^{g3} , R^{g4} , R^{g5} and R^{g6} independently optionally being substituted by one or more identical or different R^{h2} ; and

each R^h, R^{h1} and R^{h2} is selected independently of one another from among hydrogen, C₁₋₆alkyl, 2-6 membered heteroalkyl, C₁₋₆haloalkyl, C₃₋₁₀cycloalkyl, C₄₋₁₆cycloalkylalkyl, C₆₋₁₀aryl, C₇₋₁₆arylalkyl, 5-12 membered heteroaryl, 6-18 membered heteroarylalkyl, 3-14 membered heterocycloalkylalkyl, where R^h together with R^{h1} may form a 3-8 membered cycloalkyl or a 3-8 membered heterocyclalkyl residue via a shared C-, N-O- or S-atom, and

each R^5 denotes a group selected from among R^m and R^n ; and

each R^m independently of one another denotes hydrogen or a group selected from among C₁₋₆alkyl, 2-6 membered heteroalkyl, C₁₋₆haloalkyl, C₃₋₁₀cycloalkyl, C₄₋₁₆cycloalkylalkyl, C₆₋₁₀aryl, C₇₋₁₆arylalkyl, 5-12 membered heteroaryl, 6-18 membered heteroarylalkyl, 3-14 membered heterocycloalkyl and 4-14 membered heterocycloalkyl, and R^m optionally substituted by one or more identical or different Rⁿ and/or R^{o4},

each R" denotes a suitable group and is selected independently of one another from among = O, $-OR^o$, C_{1-3} haloalkyloxy, $-OCF_3$, $-OCHF_2$, =S, $-SR^o$, $=NR^o$, =NOR°, =NNR°R°¹, =NN(R°)C(O)NR°R°¹, -N(OR°R°¹, -N(OR°R°¹, -N(Rs) NR°R°1, halogen, —CF₃, —CN, —NC, —OCN, $-SCN, -NO, -NO_2, =N_2, -N_3, -S(O)R^o, -S(O)$ $-S(O)_2R^{\circ}$, $-S(O)_2OR^{\circ}$, $-S(O)NR^{\circ}R^{\circ 1}$, $-S(O)_2NR^{\circ}R^{\circ 1}$, $-OS(O)R^{\circ}$, $-OS(O)_2R^{\circ}$, $-OS(O)_2$ $\begin{array}{l} \text{OR}^{o}, -\text{OS}(\text{O})\text{RR}^{o}, \text{OS}(\text{O})\text{2RR}^{o}, \text{OS}(\text{O})\text{2}\\ \text{OR}^{o}, -\text{OS}(\text{O})\text{NR}^{o}\text{R}^{o1}, -\text{C}(\text{O})\text{R}^{o}, -\text{C}(\text{O})\text{R}^{o}, -\text{C}(\text{O})\text{NR}^{o}\text{R}^{o1}, -\text{C}(\text{O})\text{N}\\ \text{(R}^{s})\text{NR}^{o}\text{R}^{o1}, -\text{C}(\text{O})\text{N(R}^{s})\text{OR}^{o}, -\text{C}(\text{NR}^{s})\text{NR}^{o}\text{R}^{o1}, -\text{C}(\text{NOH})\text{R}^{o}, -\text{C}(\text{NOH})\text{R}^{o}\text{R}^{o1}, -\text{OC}(\text{O})\text{R}^{o}, -\text{OC}$ $(O)OR^{o}, -OC(O)SR^{o}, -OC(O)NR^{o}R^{o1}, -OC(NR^{s})$ $NR^{o}R^{o1}$, $-SC(O)R^{o}$, $-SC(O)OR^{o}$, $-SC(O)NR^{o}R^{o1}$. $-SC(NR^s)NR^{\sigma}R^{\sigma 1}$, $-N(R^s)C(O)R^{\sigma}$, $-N[C(O)R^{\sigma}][C$ $(O)R^{o1}], -N(OR^s)C(O)R^o, -N(R^s)C(NR^{s1}) R^o,$ $-N(R^s)N(R^{s1})C(O)R^o$, $--N[C(O)R^{o2}]NR^{o}R^{o1}.$ $\begin{array}{lll} - N(R^s)C(S)R^o, & -N(R^s)S(O)R^o, & -N(R^s)S(O)OR^o, \\ -N(R^s)S(O)_2R^o, & -N[S(O)_2R^o][S(O)_2R^{o1}], & -N(R^s)S(O)_2R^o. \end{array}$ $(O)_2OR^o$, $-N(R^s)S(O)_2NR^oR^{o1}$, $-N(R^s)[S(O)_2]_2R^o$, $N(R^s)C(O)OR^o$, $N(R^s)C(O)SR^o$, $N(R^s)C(O)$ $NR^{o}R^{o1}$, $-N(R^{s})C(O)NR^{s1}NR^{o}R^{o1}$, $-N(R^{s})N(R^{s1})C$ ($O)NR^{o}R^{o1}$, $-N(R^{s})C(S)NR^{o}R^{o1}$, $-[N(R^{s})C(O)]_{2}R^{o}$, $-N(R^s)C(O)]_2R^o$, $-N\{[C(O)]_2R^o\}\{[C(O)]_2R^{o1}\},$ $-N(R^{s})[C(O)]_{2}OR^{o}, -N(R^{s})[C(O)]_{2}NR^{o}R^{o1}, -N\{[C(O)]_{2}NR^{o}R^{o1}, -N\{[C(O)]_{2}NR^{o1}, -N[C(O)]_{2}NR^{o1}, -N[C(O)]_{2}$ $(O)_{2}OR^{o}$ { $[C(O)]_{2}OR^{o1}$ }, -N{ $[C(O)]_{2}NR^{o}R^{o1}$ }{ $[C(O)]_{2}NR^{o}R^{o1}$ } $-[N(R^s)C(O)]_2OR^o$, $(O)]_2NR^{o2}R^{o3}\},$ $(NRs^1)OR^{\circ}$, $-N(R^s)C(NOH)R^{\circ}$, $-N(R^s)C(NR^{s1})SR^{\circ}$, $-N(R^s)C(NR^{s1})NR^{\sigma}R^{\sigma 1}$ and $-N=C(R^s)NR^{\sigma}R^{\sigma 1}$ and each R°, R°¹, R°² and R°³ independently of one another denotes hydrogen or a group selected from among C₁₋₆alkyl, 2-6 membered heteroalkyl, C₁₋₆haloalkyl, C₃₋₁₀cycloalkyl, C₄₋₁₆cycloalkylalkyl, C₆₋₁₀aryl, C₇₋₁₆arylalkyl, 5-12 membered hetero-aryl, 6-18 membered heteroarylalkyl, 3-14 membered heterocycloalkyl

and 4-14 membered heterocycloalkylalkyl, where Ro together with Rol and/or Rs and/or Rs and/or Rs and/or Rs and/or Rs R^{c3} or R^{c2} together with R^{c3} may form a 3-8 membered mono- or bicyclic heterocyclalkyl residue via a shared C-, N- O- or S-atom, or where R° together with $R^{\circ 1}$ may 5 form a 3-14 membered spirocyclic heterocyclalkyl residue via a shared C-, N-, O- or S-atom and where R^o , R^{o1} $R^{\circ 2}$ and $R^{\circ 3}$ independently optionally being substituted by one or more identical or different R^p and/or R^{q4} , and each R^p denotes a suitable group and is selected indepen- 10 dently of one another from among = O, - OR^q , C_{1-3} haloalkyloxy, $-\text{OCF}_3$, $-\text{OCHF}_2$, =S, $-\text{SR}^q$, =NR q , =NNR^qR^{q1}, =NN(R^s)C(O)NR^qR^{q1}, -ONR^qR^{q1}, -N(R^s)NR^qR^{q1}, halogen, =NOR q , $-NR^qR^{q1}$. $-CF_3$, -CN, -NC, -OCN, -SCN, -NO, $-NO_2$, 15 $=N_2, -N_3, -S(O)R^q, -S(O)OR^q, -S(O)_2R^{\tilde{q}}, -S(O)_2OR^{\tilde{q}}, -S(O)NR^qR^{q1}, -S(O)_2NR^qR^{q1}, -OS$ $(O)R^q$, $-OS(O)_2R^q$, $-OS(O)_2OR^q$, $-OS(O)NR^qR^{q1}$, $-OS(O)_2NR^qR^{q^1}$, $-C(O)R^q$, $-C(O)OR^q$, $-C(O)SR^q$, $-C(O)NR^qR^{q^1}$, $-C(O)N(R^s)NR^qR^{q^1}$ $(R^s)OR^q$, $-C(NR^s)NR^qR^{q1}$, $-C(NOH)R^q$, -C(NOH) $\begin{array}{lll} \operatorname{NR}^q \operatorname{R}^{q1}, & -\operatorname{OC}(\operatorname{O}) \operatorname{R}^q, & -\operatorname{OC}(\operatorname{O}) \operatorname{OR}^q, & -\operatorname{OC}(\operatorname{O}) \operatorname{SR}^q, \\ -\operatorname{OC}(\operatorname{O}) \operatorname{NR}^q \operatorname{R}^{q1}, & -\operatorname{OC}(\operatorname{NR}^s) \operatorname{NR}^q \operatorname{R}^{q1}, & -\operatorname{SC}(\operatorname{O}) \operatorname{R}^q, \end{array}$ $-SC(O)OR^q$, $-SC(O)NR^qR^{q1}$, $-SC(NR^s)NR^qR^{q1}$ $-N(R^{s})C(O)R^{q}, -N[C(O)R^{q}][C(O)R^{q1}], -N(OR^{s})C$ 25 $-N(R^s)C(R^{s1})R^q$, $-N(R^s)N(R^{s1})C(O)R^q$, $-N[C(O)R^{q2}]NR^{q}R^{q1}, -N(R^{s})C(S)R^{q}, -N(R^{s})S(O)$ $R^{q}, -N(R^{s})S(O)OR^{q}, -N(R^{s})S(O)_{2}R^{q}, -N[S(O)_{2}R^{q}]$ $[S(O)_2R^{q1}], -N(R^s)S(O)_2OR^q, -N(R^s)S(O)_2NR^qR^{q1},$ $-N(R^{s})[S(O)_{2}]_{2}R^{q}$, $-N(R^{s})C(O)OR^{q}$, $-N(R^{s})C(O)$ 30 $-N(R^s)C(O)NR^qR^{q1}$, $-N(R^s)C(O)$ $NR^{s1}NR^qR^{q1}$, $N(R^s)N(R^{s1})C(O)NR^qR^{q1}$, $N(R^s)C(R^s)C(R^s)$ (S)NR^{q1}, —[N(R^s)C(O)][N(R^{g1})C(O)]R^q, —N(R^s)[C (O)]₂R^q, —N{[C(O)]₂R^q}{[C(O)]₂R^{q1}}, —N(R^s)[C (O)]₂OR^q, —N(R^s)[C(O)]₂NR^qR^{q1}, —N{[C(O)]₂ 35 OR^{q} {[C(O)]₂ OR^{q1} }, -N{[C(O)]₂ $NR^{q}R^{q1}$ }{[C(O)]₂ $NR^{q^2}R^{q^3}$, $-[N(R^s)C(O)][N(R^{s1})C(O)]OR^q$, $-N(R^s)$ $C(NR^{s1})OR^q$, $-N(R^s)C(NOH)$ R^q , $-N(R^s)C(NR^{s1})$ SR^q , $-N(R^s)C(NR^{s1})NR^qR^{q1}$, $-N(R^s)C(=N-CN)$ NR^qR^{q1} and $-N=C(R^s)NR^qR^{q1}$, and

each R^q, R^{q1}, R^{q2}, R^{q3} and R^{q4} independently of one another denotes hydrogen or a group selected from among C₁₋₆alkyl, 2-6 membered heteroalkyl, C₁₋₆haloalkyl, C₃₋₁₀cycloalkyl, C₄₋₁₆cycloalkylalkyl, C₆₋₁₀aryl, C₇₋₁₆arylalkyl, 5-12 membered hetero-aryl, 45 6-18 membered heteroarylalkyl, 3-14 membered heterocycloalkyl and 4-14 membered heterocycloalkylalkyl, where R^q together with R^{q1} and/or R^{q2} and/or R^{q3} and/or R^s may form a 3-8 membered heterocycloalkyl residue via a shared C-, N- O- or S-atom, wherein R^q, R^{q1}, R^{q2}, 50 R^{q3} and R^{q4} are optionally independently substituted by one or more identical or different R^r and/or R^{s4}, and

each R' denotes a suitable group and in each case is selected independently of one another from among \Longrightarrow O, \longrightarrow ORs, \bigcirc C₁₋₃haloalkyloxy, \longrightarrow OCF₃, \longrightarrow OCHF₂, \Longrightarrow S 55 \longrightarrow SRs, \Longrightarrow NRs, \Longrightarrow NORs, \Longrightarrow NNRsRs¹, \Longrightarrow NN(R')C(O) NRsRs¹, \longrightarrow NRsRs¹, \longrightarrow ONRsRs¹, \longrightarrow N(Rh)NRsRs¹, halogen, \longrightarrow CF₃, \longrightarrow CN, \longrightarrow NC, \longrightarrow OCN, \longrightarrow SCN, \longrightarrow NO, \longrightarrow NO₂, \Longrightarrow NO₂, \Longrightarrow NO₃, \Longrightarrow S(O)₂ORs, \Longrightarrow S(O)₂

 $-S(O)NR^{s}R^{s1}$, $-S(O)_{2}NR^{s}R^{s1}$, $-OS(O)R^{s}$, $-OS(O)_{2}$ R^s , $-OS(O)_2OR^s$, $-OS(O)NR^sR^{s1}$, $-OS(O)_2NR^sR^{s1}$. $-C(O)R^s$, $-C(O)OR^s$, $-C(O)SR^s$, $-C(O)NR^sR^{s1}$, $-C(O)N(R^t)NR^sR^{s1}$, $-C(O)N(R^t)OR^s$, $-C(NR^t)$ $NR^{s}R^{s1}$, —C(NOH) R^{s} , — $C(NOH)NR^{s}R^{s1}$, —OC(O) R^s , $-OC(O)OR^s$, $-OC(O)SR^s$, $-OC(O)NR^sR^{s1}$, $-OC(NR^t)NR^sR^{s1}$, $-SC(O)R^s$, $-SC(O)OR^s$, -SC(O) $NR^{s}R^{s1}$, $-SC(NR^{t})NR^{s}R^{s1}$, $-N(R^{t})C(O)$ R^{s} , $-N[C(O)R^s][C(O)R^{s1}], -N(OR^t)C(O)R^s, -N(R^t)C$ $-N(R^t)N(R^{t1})C(O)R^s$, $(NR^{t1})R^s$, $-N[C(O)R^{g^2}]$ NR^sR^{s1} , $-N(R^t)C(S)R^s$, $-N(R^t)S(O)R^s$, $-N(R^t)S(O)$ OR^{s} , $-N(R^{t})S(O)_{2}R^{s}$, $-N[S(O)_{2}R^{s}][S(O)_{2}R^{s1}]$, $-N(R^t)S(O)_2OR^s$, $-N(R^t)S(O)_2NR^sR^{s1}$, $-N(R^t)[S$ $(O)_2$, R^s , $N(R^t)C(O)OR^s$, $N(R^t)C(O)SR^s$, $N(R^t)$ $C(O)NR^{s}R^{s1}$, $-N(R^{t})C(O)NR^{t1}NR^{s}R^{s1}$, $-N(R^{t})N$ $(\mathbf{R}^{t1})\mathbf{C}(\mathbf{O})\mathbf{N}\mathbf{R}^{s}\mathbf{R}^{s1}, \quad -\mathbf{N}(\mathbf{R}^{t})\mathbf{C}(\mathbf{S})\mathbf{N}\mathbf{R}^{s}\mathbf{R}^{s1}, \quad -\mathbf{N}(\mathbf{R}^{t})\mathbf{C}(\mathbf{S})\mathbf{N}\mathbf{R}^{s}\mathbf{R}^{s1}$ $(O)[N(R^{h_1})C(O)]R^s$, $-N(R^t)[C(O)]_2R^s$, $-N\{[C(O)]_3$ R^{s} {[C(O)]₂ R^{s1} }, $-N(R^{t})$ [C(O)]₂ OR^{s} , $-N(R^{t})$ [C $(O)]_2NR^sR^{s1}, --N\{[C(O)]_2OR^s\}\{[C(O)]_2OR^{s1}\}, --N\{[C(O)]_2OR^{s1}\}, --N\{[C(O)]$ $[C(O)]_{s}NR^{s}R^{s1}$ { $[C(O)]_{s}NR^{s2}R^{s3}$ }, $-[N(R^{t})C(O)][N$ $(R^{t_1})C(O)OR^s$, $-N(R^t)C(NR^{t_1})OR^s$, $-N(R^t)C(NOH)$ R^s , $-N(R^t)C(NR^{t1})SR^s$, $-N(R^t)C(NR^{t1})NR^sR^{s1}$. $-N(R^t)C(=N-CN)NR^sR^{s1}$ and $-N=C(R^t)NR^sR^{s1}$;

each R^s, R^{s1}, R^{s2}, R^{s3} and R^{s4} independently of one another denotes hydrogen or a group selected from among C₁₋₆alkyl, 2-6 membered heteroalkyl, C₁₋₆haloalkyl, C₃₋₁₀cycloalkyl, C₄₋₁₆cycloalkylalkyl, C₆₋₁₀aryl, C₇₋₁₆arylalkyl, 5-12 membered hetero-aryl, 6-18 membered heteroarylalkyl, 3-14 membered heterocycloalkyl and 4-14 membered heterocycloalkylalkyl, where R^s together with R^{s1} and/or R^{s2} and/or R^{s3} and/or R^t may form a 3-8 membered heterocyclalkyl residue via a shared C-, N- O- or S-atom, R^s, R^{s1}, R^{s2}, R^{s3} and R^{s4} independently optionally being substituted by one or more identical or different R^{t2}; and

each R^t, R^{t1} and R^{t2} is selected independently of one another from among hydrogen, C₁₋₆alkyl, 2-6 membered heteroalkyl, C₁₋₆haloalkyl, C₃₋₁₀cycloalkyl, C₄₋₁₆cycloalkylalkyl, C₆₋₁₀aryl, C₇₋₁₆arylalkyl, 5-12 membered heteroaryl, 6-18 membered heteroarylalkyl, 3-14 membered heterocycloalkylalkyl, where R^t together with R^{t1} may form a 3-8 membered heterocyclalkyl residue via a shared C-, N-, O- or S-atom, and

each R^{ν} is selected independently of one another from among hydrogen, $C_{1\text{-}6}$ alkyl, 2-6 membered heteroalkyl, $C_{1\text{-}6}$ haloalkyl, optionally in the form of the tautomers, the racemates, the enantiomers, the diastereomers, and optionally the pharmacologically acceptable salts thereof.

2. The method of treating cancer, comprising administering an effective amount of a compound of formula 1 of claim 1, or a pharmaceutically acceptable salt thereof and pharmaceutically acceptable excipients and/or carriers, to a patient in need thereof.

* * * * *